Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.
We present an analysis ofρ0ρ0 production by two photons in theρ0ρ0 invariant mass range from 1.2 to 2.0 GeV. From a study of the angular correlations in the process γγ→ρ0ρ0→π−π+π− we exclude a dominant contribution fromJP=0− or 2− states. The data indicate sizeable contributions fromJP=0+ for four pion massesM4π<1.7 GeV and fromJP=2+ forM4π>1.7 GeV. The data are also well described by a model with isotropic production and uncorrelated isotropic decay of theρ0,s. The cross section stays high below the nominalρ0ρ0 threshold, i.e.M4π<1.5 GeV. The matrix element forρ0ρ0 production is found to decrease steeply with increasingM4π. Upper limits for the couplings of the ι(1440) and Θ(1640) to γγ andρ0ρ0 are given:Γ(ι→γγ)·B(ι→ρ0ρ0)<1.0 keV andΓ(Θ→γγ)
ASSUMING ISOTROPIC RHO0 RHO0 PRODUCTION AND ISOTROPIC RHO DECAY.
CROSS SECTIONS FOR DIFFERENT SPIN-PARITY CONTRIBUTIONS.
A new measurement of the elastic scattering of 250-GeV/c negative pions by electrons provides form-factor results from 0.0368
No description provided.
Virtual photoproduction of J/ ψ mesons has been measured for 280 GeV muon iron interactions in an iron/scintillator calorimeter target. The J/ψ's were identified by their decay into muon pairs. 315 events were observed, about half of which were elastic. The t , Q 2 and v distributions of these elastic events are presented. The v dependence is measured between 40 and 180 Mev and compared with lower energy photoproduction results. The Q 2 dependence is compared with the predictions of the vector dominance model.
TPRIME DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL Q2 AND NU WITH 280 GEV MUON BEAM.
NORMALIZED Q**2 DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL NU AND T WITH 280 GEV MUON BEAM.
EXTRAPOLATION OF Q**2 AND T DEPENDENCE TO CALCULATE D(SIG)/DT AT Q**2=0 AND T=0 FOR ELASTIC J/PSI PHOTOPRODUCTION PER NUCLEON.
We present the results obtained with the magnetic detector DM1 at the Orsay storage ring ACO for the reaction e + e − → π + π − π 0 from 483 to 1100 MeV in the center of mass. Our data show without ambiguity an interference effect between the ω and φ mesons, which corresponds to a negative coupling constant product ratio Re( g γω g ω →3 π / g γφ g φ →3 π ) ; however our measurements above the φ, performed using kinematical analysis, can only be explained by a higher energy contribution. In addition, the parameters of the ω have been obtained with an improved accuracy compared to other experiments, and particularly the branching ratio B ω →e + e − = (6.75±0.69) × 10 −5 . We confirm that the reaction e + e − → π + π − π 0 proceeds essentially via a quasi-two-body state ϱπ , at the energy of the φ.
FITTED CROSS SECTION AT OMEGA PEAK IS 1410 +- 130 NB AND AT PHI PEAK IS 615 +- 55 NB.
We present the results of a measurement of the cross section oof the reaction e + e − → π + π − π + π − from 890 to 1100 MeV in the center of mass, obtained with a magnetic detector at the Orsay Storage Ring ACO. With respect to previous experiments, the present one offers the possibility of reconstructing events with at least one constraint and his improved statistics. We find that our measurement of the cross section for e + e − → π + π − π + π − is compatible with quasi two-body production of π A 1 ( m A1 = 1.1 GeV, Γ A1 ∼ 0.2−0.3 GeV), through the ϱ and ϱ′(1600) intermediate states. We were able to states. We were able to determine the cross section of this reaction at the energy of the φ meson and consequently an upper limit on the branching ratio of φ → π + π − π + π − .
UPPER LIMIT FOR PHI --> 4PI.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).
The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .
No description provided.
The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.
No description provided.
SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.
None
No description provided.