Proton-antiproton elastic scattering was measured at the centre-of-mass energy s = 630 GeV in the four-momentum transfer range 0.7 ⩽ − t ⩽ 2.2 GeV 2 . The new data confirm our previous results at s = 546 GeV on the presence of a break in the t -distribution at − t ≃ 0.9 GeV 2 which is followed by a shoulder, and extend the momentum transfer range to larger values. The t -dependence of the differential cross section beyond the break is discussed.
Errors contain statistics and acceptance uncertainty.
Proton-antiproton elastic scattering was measured at the center-of-mass energy s =546 GeV in the four-momentum transfer range 0.45⩽−⩽1.55GeV 2 . The shape of the t -distribution is quite different from that observed in proton-proton scattering at the ISR. Rather than a dip-bump structure, a kink is present at − ≈0.9GeV 2 followed by a shoulder. The cross section at the second maximum is more than one order of magnitude higher than at the ISR.
No description provided.
Proton-antiproton elastic scattering was measured at a centre of mass energy s = 540 GeV . In the four-momentum transfer range 0.21 < − t < 0.50 GeV 2 the t -distribution of about 7000 events is well represented by the exponential shape exp ( bt ) with slope parameter b = 13.7 ± 0.3 GeV −2 . A new measurement of the slope for − t < 0.19 GeV 2 confirms our earlier result, giving evidence for a change of slope of about 4 GeV −2 around − l ̷ ≈ 0.15 GeV 2 .
NUMERICAL VALUES OF LOW T DATA GIVEN IN BOZZO 84. STATISTICAL ERRORS ONLY.
NUMERICAL VALUES OF MEDIUM T DATA TAKEN FROM BOZZO 84. THESE ARE THE EARLIER (BATTISTON 83) VALUES RENORMALISED TO THE NEW LOW T DATA IN THE OVERLAP REGION. ERRORS ARE STATISTICAL ONLY.
SLOPE VALUES FROM BATTISTON 83.
None
No description provided.
No description provided.
No description provided.
The reaction π + n → ω 0 p has been studied at 4 GeV/ c giving a total cross section of 313 ± 26 μ b. The sample of about 3500 ω 0 events produced in the forward direction has been used to determine the differential cross section and the spin density matrix elements. The effective trajectory for unnatural parity exchange has been determined by a comparison of ϱ 00 d σ /d t at different energies. A comparison of ϱ 00 d σ /d t has been made with the similar data for ϱ 0 production in this experiment allowing π-B exchange degeneracy and ϱ-ω interference to be investigated. These methods result in an unnatural trajectory consistent with that expected for the B-meson. A further study of ϱ-ω interference has been made by comparing the reactions π + n → ω 0 p and π − p → ω 0 n at similar energies. Our results on ω and ϱ production are combined with data on K ∗0 and K ∗0 production at 4 GeV/ c and an SU(3) sum rule relating the production of these four mesons is shown to be satisfied.
ASSUMING PREDOMINANTLY NUCLEON SPIN FLIP.
No description provided.
No description provided.
We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.
None
'1'. '2'. '3'.