Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 106 (2022) 072010, 2022.
Inspire Record 2087127 DOI 10.17182/hepdata.130778

The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.

127 data tables

Distribution of the normalized jet yield as a function of detector jet-$p_{T}$ in 2015 data and simulation. The lower panel shows the ratio between data and simulation.

Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron longitudinal momentum fraction, $z$, in two different ranges of jet-$p_{T}$.

Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron momentum transverse to the jet axis, $j_{T}$, in two different ranges of jet-$p_{T}$.

More…

Longitudinal Double-Spin Asymmetries for Dijet Production at Intermediate Pseudorapidity in Polarized $pp$ Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032011, 2018.
Inspire Record 1674714 DOI 10.17182/hepdata.130944

We present the first measurements of the longitudinal double-spin asymmetry $A_{LL}$ for dijets with at least one jet reconstructed within the pseudorapidity range $0.8 < \eta < 1.8$. The dijets were measured in polarized $pp$ collisions at a center-of-mass energy $\sqrt{s}$ = 200 GeV. Values for $A_{LL}$ are determined for several distinct event topologies, defined by the jet pseudorapidities, and span a range of parton momentum fraction $x$ down to $x \sim$ 0.01. The measured asymmetries are found to be consistent with the predictions of global analyses that incorporate the results of previous RHIC measurements. They will provide new constraints on $\Delta g(x)$ in this poorly constrained region when included in future global analyses.

17 data tables

Data/simulation comparisons of the relative jet yields as functions of Barrel+endcap jet pseudorapidity

Data/simulation comparisons of the relative jet yields as functions of Barrel+endcap jet azimuthal angle

Data/simulation comparisons of the relative jet yields as functions of jet transverse momentum for the barrel

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Study of the reaction $e^+e^- \to \pi^0\gamma$ with the SND detector at the VEPP-2M collider

The SND collaboration Achasov, M.N. ; Beloborodov, K.I. ; Berdyugin, A.V. ; et al.
Phys.Rev.D 93 (2016) 092001, 2016.
Inspire Record 1418483 DOI 10.17182/hepdata.77047

The process $e^+e^- \to \pi^0\gamma$ has been studied in the experiment with the SND detector at the VEPP-2M $e^+e^-$ collider. The $e^+e^- \to \pi^0\gamma$ cross section has been measured in the center-of-mass energy range from 0.60 to 1.38 GeV. The cross section is well described by the vector meson dominance model. From the fit to the cross section data we have determined the branching fractions $B(\rho\to\pi^0\gamma)=(4.20\pm0.52)\times10^{-4}$, $B(\omega\to\pi^0\gamma)=(8.88\pm0.18)\%$, $B(\phi\to\pi^0\gamma)=(1.367\pm0.072)\times10^{-3}$, and the relative phase between the $\rho$ and $\omega$ amplitudes $\varphi_{\rho}=(-12.7\pm4.5)^\circ$. Our data on the process $e^+e^- \to \pi^0\gamma$ are the most accurate to date.

1 data table

The c.m.energy ($E$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N_{\rm sig}$), radiative-correction factor ($1+\delta$), measured Born cross section ($\sigma$). For the cross section the first error is statistical, the second is systematic.


Measurement of the transverse single-spin asymmetry in $p^\uparrow+p \to W^{\pm}/Z^0$ at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 132301, 2016.
Inspire Record 1405433 DOI 10.17182/hepdata.73263

We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.

6 data tables

$P_{T}$ Recoil distribution of events simulated with PYTHIA 6.4 and reconstructed before and after the boson's PT correction has been applied.

Estimated background contributions for the $W^+ -> ev$ data yields.

Estimated background contributions for the $W^- -> ev$ data yields.

More…

Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Measurements of Dielectron Production in Au$+$Au Collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV from the STAR Experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 92 (2015) 024912, 2015.
Inspire Record 1357992 DOI 10.17182/hepdata.73504

We report on measurements of dielectron ($e^+e^-$) production in Au$+$Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum ($p_{\rm T}$) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region ($M_{ee}<$ 1 GeV/$c^2$). This enhancement cannot be reproduced by the $\rho$-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 $-$ 0.76 GeV/$c^2$, integrated over the full $p_{\rm T}$ acceptance, the enhancement factor is 1.76 $\pm$ 0.06 (stat.) $\pm$ 0.26 (sys.) $\pm$ 0.29 (cocktail). The enhancement factor exhibits weak centrality and $p_{\rm T}$ dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 $\pm$ 0.10. Models that assume an in-medium broadening of the $\rho$ meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of $\omega$ and $\phi$-meson production through their $e^+e^-$ decay channel. These measurements show good agreement with Tsallis Blast-Wave model predictions as well as, in the case of the $\phi$-meson, results through its $K^+K^-$ decay channel. In the intermediate invariant-mass region (1.1$<M_{ee}<$ 3 GeV/$c^2$), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.

50 data tables

Estimated electron purity vs. momentum in 200 GeV Au + Au collisions.

Acceptance correction factor for unlike-sign and like-sign pair difference from 200 GeV Au+Au minimum-bias collisions.

Ratio of the same-event like-sign to the mixed event unlike-sign distributions.

More…

Charged-to-neutral correlation at forward rapidity in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 91 (2015) 034905, 2015.
Inspire Record 1311834 DOI 10.17182/hepdata.73610

Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at $\sqrt{s_{NN}}$=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.

21 data tables

Multiplicity distributions of raw charged particles and photons.

The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for real events. $\omega_{ch}^{real}$ is plotted.

The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for mixed events. $\omega_{ch}^{mixed}$ is plotted.

More…

The $\Lambda\Lambda$ Correlation Function in Au+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 022301, 2015.
Inspire Record 1311513 DOI 10.17182/hepdata.73492

We present $\Lambda\Lambda$ correlation measurements in heavy-ion collisions for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednick\'{y}-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the $\Lambda\Lambda$ correlation function and interaction parameters for di-hyperon searches are discussed.

4 data tables

The invariant mass distribution for $\Lambda$ and $\bar{\Lambda}$ produced in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality. The $\Lambda$ and $\bar{\Lambda}$ candidates lying in the mass range 1.112 to 1.120 GeV/c^2 were selected for the correlation measurement.

The $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality.

The combined $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function for 0-80% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

7 data tables

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

More…