Date

A Measurement and QCD Analysis of the Proton Structure Function $F_2(x,Q~2)$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 470 (1996) 3-40, 1996.
Inspire Record 416819 DOI 10.17182/hepdata.44781

A new measurement of the proton structure function $F_2(x,Q~2)$ is reported for momentum transfers squared $Q~2$ between 1.5GeV$~2$ and 5000GeV$~2$ and for Bjorken $x$ between $3\cdot 10~{-5}$ and $0.32$ using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low $Q~2$ and $x$ has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing $x$, even in the lowest accessible $Q~2$ region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

26 data tables

Data from shifted vertex sample.

Data from shifted vertex sample.

Data from shifted vertex sample.

More…

Measurement of the $Q~{2}$ dependence of the Charged and Neutral Current Cross Sections in $e~{\pm}p$ Scattering at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 379 (1996) 319-329, 1996.
Inspire Record 417155 DOI 10.17182/hepdata.44768

The $Q~{2}$ dependence and the total cross sections for charged and neutral current processes are measured in $e~{\pm}p$ reactions for transverse momenta of the outgoing lepton larger than 25 GeV. Comparable size of cross sections for the neutral current process and for the weak charged current process are observed above $Q~2\approx5000$GeV$~2$. Using the shape and magnitude of the charged current cross section we determine a propagator mass of $m_{W} = 84\ ~{+10}_{-7}$ GeV.

4 data tables

No description provided.

No description provided.

Total cross-section for E-P events.

More…

Study of the B(s)0 anti-B(s)0 oscillation frequency using D(s)- lepton+ combinations in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 377 (1996) 205-221, 1996.
Inspire Record 417261 DOI 10.17182/hepdata.52362

A lower limit on the oscillation frequency of the B s 0 B s 0 system is obtained from approximately four million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1995. Leptons are combined with opposite sign D s − candidates reconstructed in seven different decay modes as evidence of semileptonic B s 0 decays. Criteria designed to ensure precise proper time reconstruction select 277D s − ℓ + combinations. The initial state of these B s 0 candidates is determined using an algorithm optimized to efficiently utilise the tagging information available for each event. The limit at 95% confidence level on the B s 0 B s 0 oscillation frequency is Δm s > 6.6 ps −1 . The same data is used to update the measurement of the B s 0 lifetime, τ s = 1.54 −0.13 +0.14 (stat) ± 0.04 (syst) ps.

2 data tables

This result supersedes the previous measurement ( 1.59 +0.17 -0.15 (stat.) +-0.03 (sys.) ps ) presented in reference PL 361B, 221.

No description provided.


Forward - backward charge asymmetry of electron pairs above the Z0 pole

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 2616-2621, 1996.
Inspire Record 417098 DOI 10.17182/hepdata.50121

We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75

1 data table

The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.


A study of electron muon pair production in 450-GeV/c p Be collisions.

Åkesson, T. ; Almehed, S. ; Angelis, A.L. S. ; et al.
Z.Phys.C 72 (1996) 429-436, 1996.
Inspire Record 416743 DOI 10.17182/hepdata.12544

We report on the production ofe± μ∓ pairs in 450 GeV/c pBe collisions at the CERN SPS. Theeμ signal, which has average missing energy of 21 GeV, is shown to be consistent with expectations from charm decay, and implies a σ ×B for\(c\bar c\) production in p-nucleon collisions of 0.63 ± 0.35μb. Alternatively, using an estimate of charm production from other experiments, the data imply a 95% confidence level upper limit of 1.16μb on any new physics process which producese±μ∓.

2 data tables

Linear A-dependence is assumed. For the first reaction the cross section times branching ratios. For the second reaction the statistical and systematic errors have been combined in quadrature.

No description provided.


First measurement of f2-prime (1525) production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 379 (1996) 309-318, 1996.
Inspire Record 416741 DOI 10.17182/hepdata.47972

The inclusive production of the f ′ 2 (1525) in hadronic Z 0 decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f ′ 2 (1525) → K + K − . The average number of f ′ 2 (1525) produced per hadronic Z decay, 〈f′ 2 〉 = 0.020 ± 0.005 (stat) ± 0.006 (syst), and the momentum distribution of the f ′ 2 (1525) have both been measured. The mass and width of the f ′ 2 (1525) are found to be 〈M f′ 2 〉 = 1535 ± 5 (stat) ± 4 (syst) MeV/c 2 , (T f′ 2 ;) = 60 ± 20 (stat) ± 19 (syst) MeV/c 2

2 data tables

SIG in (1/SIG) is the total hadronic cross section.

No description provided.


Observation of an excited charmed baryon decaying into Xi(c)0 pi+

The CLEO collaboration Gibbons, L. ; Johnson, S.D. ; Kwon, Y. ; et al.
Phys.Rev.Lett. 77 (1996) 810-813, 1996.
Inspire Record 416471 DOI 10.17182/hepdata.47237

Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into Ξc0π+. The state has mass difference M(Ξc0π+)−M(Ξc0) of 174.3±0.5±1.0MeV/c2, and a width of <3.1MeV/c2 (90% confidence level limit). We identify the new state as the Ξc*+, the isospin partner of the recently discovered Ξc*0.

1 data table

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(X) = FD(X) = const * (1/X)*1/(1- (1/X)-CONST(NAME=EPS)/(1-X))**2. Charged conjugate states are undestood.


Measurement of muon pair production at 50-GeV < s**(1/2) < 86-GeV at LEP

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 374 (1996) 331-340, 1996.
Inspire Record 416744 DOI 10.17182/hepdata.47586

Using the data recorded with the L3 detector at LEP, we study the process e + e − → μ + μ − ( γ ) for events with hard initial-state photon radiation. The effective centre-of-mass energies of the muons range from 50 GeV to 86 GeV. The data sample corresponds to an integrated luminosity of 103.5 pb −1 and yields 293 muon-pair events with a hard photon along the beam direction. The events are used to determine the cross sections and the forward-backward charge asymmetries at centre-of-mass energies below the Z resonance.

3 data tables

Here S refers to the reduced centre-of-mass energy.

Forward-Backward Asymmetry from fit as function of the reduced centre-of-mass energy.

Background corrected Forward-Backward Asymmetry as function of the reduced centre-of-mass energy.


Proton and deuteron structure functions in muon scattering at 470-GeV

The E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Rev.D 54 (1996) 3006-3056, 1996.
Inspire Record 416076 DOI 10.17182/hepdata.42347

The proton and deuteron structure functions F2p and F2d are measured in inelastic muon scattering with an average beam energy of 470 GeV. The data were taken at Fermilab experiment E665 during 1991 and 1992 using liquid hydrogen and deuterium targets. The F2 measurements are reported in the range 0.0008

34 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the diffractive cross-section in deep inelastic scattering

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 70 (1996) 391-412, 1996.
Inspire Record 415942 DOI 10.17182/hepdata.44849

Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm

3 data tables

No description provided.

No description provided.

No description provided.