The polarization parameter for the reaction π−p→π0n has been measured at five incident been momenta between 1.03 and GeV/c. The results are compared with predictions of recent phase-shift analyses.
.
.
.
About 45000 interactions of antiprotons of kinetic energy between 57 and 170 MeV have been measured in a deuterium bubble chamber. Total and annihilation cross-sections have been determined at 9 values of the antiproton energy together with the differential crosssection dσ/dt for scattering events. In spite of the peculiar behaviour of the deuteron target at these low energies a reliable measure of the antiproton-neutron annihilation cross-section has been obtained.
INELASTIC (ANNILATION + CHARGE EXCHANGE), SCATTERING (ELASTIC + INELASTIC) AND TOTAL CROSS SECTIONS. AUTHORS ALSO GIVE TOPOLOGICAL DECOMPOSITION OF THESE CROSS SECTIONS.
SCATTERED ANTIPROTON ANGULAR DISTRIBUTION. THE OPTICAL POINT AT T=0 IS CALCULATED FROM THE TOTAL CROSS SECTION. SEPARATION INTO SCATTERING ON PROTONS AND ON NEUTRONS IS IMPOSSIBLE.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.
In an experiment with the CERN 2 metre DBC the reaction K$^+$d $\to$ K$^0 \pi^+$d is studied at an incident momentum of 4.6 GeV/c. The cross section is found to be (66 ± 10) μb for four-momentum transfer squared from target to recoil deuteron greater than 0.02 GeV 2 , and the reaction is dominated by the production of K$^*+$ (892) via natural parity exchange. Using data for the reactions K$^\pm$d $\to$ K$^{*\pm}$(892)d in the incident momentum range 2–13 GeV/ c the parameters of the effective exchanged trajectory are estimated.
No description provided.
No description provided.
No description provided.
Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.
No description provided.
No description provided.
No description provided.
A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
21 differential cross section measurements of the np → pn charge-exchange reaction have been carried out at the synchrotron Saturne (Saclay), for incident neutron momenta between 1 and 2 GeV/ c and in the squared four-momentum transfer range 0 ⩽ −t ⩽ 0.4 (GeV/ c ) 2 . The π exchange peak is seen at all the incident momenta. The s dependence of the very forward slope of this peak shows weak structures near the threshold of inelastic channels.
No description provided.
No description provided.
No description provided.
The differential cross section for π − p → π 0 n has been measured in the t range 1.8 ⩽ | t | ⩽ 8.2 (GeV/ c ) 2 by a counter-spark chamber experiment detecting the neutron and both π 0 decay photons. A broad minimum was found, centered at | t | = 5.2 (GeV/ c ) 2 .
No description provided.
The reaction e − + p → e − + p + η has been studied in the region of the S 11 (1535)-resonance by detecting the recoil proton in coincidence with the scattered electron. The reaction has been observed at three four-momentum transfers of the virtual photon: q 2 = 0.2, 0.28 and 0.4 (GeV/ c ). First results of the differential cross section measurements are given and compared with quark model calculations.
No description provided.
No description provided.
New results on the multihadron production by electron and positron beams colliding with a total energy of up to 3 GeV are reported. Disregarding possible kaon final states, the ratio σ mh / σ μμ of the total multihadron cross-section to the point-like cross section for process e + e − → μ + μ − has an average value of 1.58 ± 0.25 in the energy interval 2.6–3.0 GeV. The average charged multiplicity over this energy range is 〈 n c 〉 = 2.9 ± 0.3.
AT A MEAN ENERGY OF 2.85 GEV, THE AVERAGE MULTIHADRON CROSS SECTION IS 16.4 +- 2.6 NB (R = 1.58 +- 0.25).