Date

Production of charmed mesons in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 62 (1994) 1-14, 1994.
Inspire Record 363280 DOI 10.17182/hepdata.48368

The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D

4 data tables match query

No description provided.

The DSYS error is due to the error in the branching ratio.

The DSYS error is due to the error in the branching ratio.

More…

Update of electroweak parameters from Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

9 data tables match query

Data from 1990 running period.

Data from 1990 running period.

Data from 1990 running period.

More…

K0 production in one prong tau decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 332 (1994) 219-227, 1994.
Inspire Record 373752 DOI 10.17182/hepdata.68011

From a sample of about 75000 τ decays identified with the ALEPH detector, K 0 production in 1-prong hadronic decays is investigated by tagging the K L 0 component in a hadronic calorimeter. Results are given for the final states ν τ h − K 0 and ν τ h − π 0 K 0 where the h − is separated into π and K contributions by means of the dE / dx measurement in in the central detector. The resulting branching ratios are: ( Bτ → ν τ π − K 0 ) = (0.88±0.14±0.09)%, ( Bτ → ν τ K − K 0 ) = (0.29±0.12±0.03)%, ( Bτ → ν τ π − π 0 K 0 ) = (0.33±0.14±0.07)% aand ( Bτ → ν τ K − π 0 K 0 ) = (0.05±0.05±0.01)%. The K ∗ decay rate in the K 0 π channel agrees with that in the Kπ 0 mode: the combined value for the branching ratio is (Bτ → ν τ K ∗− ) = (1.45±0.13±0.11)% .

1 data table match query

Invariant mass distribution for the $K^0\pi$ system data. The numbers have been read from the plot in the paper.


Production of K0 and Lambda in hadronic Z decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 64 (1994) 361-374, 1994.
Inspire Record 375060 DOI 10.17182/hepdata.48239

Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten

Conway, J.S. ; Adolphsen, C.E. ; Alexander, J.P. ; et al.
Phys.Rev.D 39 (1989) 92-122, 1989.
Inspire Record 280845 DOI 10.17182/hepdata.23151

We present the results of a study of muon pairs with invariant masses greater than 4.05 GeV/c2 produced in high-energy pion-nucleon interactions. The production cross section together with the inferred pion and nucleon structure functions are reported and compared with other experiments and with QCD predictions. The transverse-momentum distributions are also presented. Finally, the full angular distribution in cosθ and φ is given as a function of mass, Feynman x, and transverse momentum. Longitudinal photon polarization is seen in the lower portion of the mass range at high xπ. This result is compared with a higher-twist model.

18 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the production rates of eta and eta-prime in hadronic Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Phys.Lett.B 292 (1992) 210-220, 1992.
Inspire Record 334575 DOI 10.17182/hepdata.29156

The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.

3 data tables match query

No description provided.

Additional 7 pct systematic error.

Additional 23 pct systematic error.


Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

9 data tables match query

Jet mass difference distribution.

N-jet production rates (in percent) corrected for charged particles only.

N-jet production rates (in percent) corrected for charged particles only.

More…

Measurement of the Ratio of Sea to Valence Quarks in the Nucleon

Heinrich, J.G. ; Adolphsen, C.E. ; Alexander, J.P. ; et al.
Phys.Rev.Lett. 63 (1989) 356-359, 1989.
Inspire Record 285060 DOI 10.17182/hepdata.20030

The ratio of sea to valence quarks for nucleons in tungsten has been measured for the fractional momentum range 0.04<xN<0.36. The determination is based on the relative production rate of muon pairs by π+ and π− beams on a tungsten target. The results provide the most accurate determination to date of this ratio in the region xN<0.1 and Q2>20 GeV2, and are in good agreement with earlier measurements.

1 data table match query

No description provided.


Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table match query

The second DSYS error is the theoretical error.


Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table match query

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.