We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.
No description provided.
We have observed a very sharp peak in the cross section for e+e−→hadrons, e+e−, and possibly μ+μ− at a center-of-mass energy of 3.105±0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.
No description provided.
None
No description provided.
No description provided.
The differential cross section d σ d t′ for the charge-exchange process π + p → π 0 ( π + p) at 8, 16 and 23 GeV/ c is presented for several regions of the π + p effective mass. It is found that the dip at t ′ ≈ 0.6 (GeV/ c ) 2 which is observed in the Δ(1236) mass band becomes a less pronounced structure in the higher mass regions. However, while the slope of the d σ d t′ distributions in the near-forward direction decreases strongly with increasing π + p mass, there is no evidence that the observed structure moves to higher values of t ′ as the π + p mass increases. These results are consistent with a Regge-exchange picture where the position of the dip is determined by the exchanged trajectory, but are inconsistent with a simple geometrical picture.
TP DEPENDENCE FOR FOUR <PI+ P> MASS INTERVALS.
The final states\(\bar p\)pω and\(\Delta ^{ ++ } \bar \Delta ^{ -- } \pi ^0 \), produced in the reaction\(\bar p\)p →\(\bar p\)pπ+π−π0 (6435 events) at 5.7 GeV/c, are studied. Cross-sections are presented, and general features of the resonances produced are investigated. Spin alignment of the ω’s, reported earlier, is studied. An enhancement is observed in the ωp (ω\(\bar p\)) mass plot of mass (1810±15) MeV and width (87 ± 20) MeV.
No description provided.
In a 35 000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at the Fermi National Accelerator Laboratory, 10054 interactions have been observed. The measured total cross section is $40.68 \pm 0.55$ mb, the elastic cross section is $7.89 \pm 0.52$ mb, and the average charged-particle multiplicity for inelastic events is $8.S0 \pm 0.12$.
QUOTED ERRORS INCLUDE EFFECTS OF CORRECTIONS.
No description provided.
The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.
Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.
The π − p→K 0 λ polarization has been measured at 5 GeV/ c in the range 0<− t <1.4 (GeV/ c ) 2 . The polarization is small for − t ⪅0.4 (GeV/ c ) 2 , becoming negative at the higher values of − t .
No description provided.
We have investigated the ρ-meson production mechanism in the three reactions π±p→ρ±p and π−p→ρ0n at 3.9 GeV/c (s=8.2 GeV2) using the prism-plot technique. Differential cross sections at all momentum transfers are presented. A significant backward peak has been found in all three reactions. The differential cross sections for these backward peaks are given and are compared with the equivalent pion elastic and charge-exchange cross sections in the backward direction. Using a linear combination of the three differential cross sections we have isolated the I=0 exchange contribution in the forward direction. This differential cross section has a zero at −t=0.45 (GeV/c)2 and is fitted by the dual absorptive model of Harari with an interaction radius of ∼ 1.2 F. The total I=0 cross section is calculated and compared with similarly determined cross sections at higher momenta. An analysis of the properties of the other possible spin-parity exchanges is also presented.
SLOPE FITTED OVER 0.05 < -T < 0.3 GEV**2.
No description provided.
No description provided.
Results on multiplicities, topological cross sections, total particle production cross sections, and correlations between charged particle and π 0 production are presented for pp interactions at 12 and 24 GeV/ c incident laboratory momentum. Inclusive production of π ± , K s 0 , p , Λ, Σ ± and Λ is studied; particle spectra are shown in single and double differential form and are compared, in different kinematic regions, with data obtained at other incident momenta and with other beam particles.
No description provided.
No description provided.