Date

Photon asymmetry measurements of $\overrightarrow{\gamma} \mathrm{p} \rightarrow \pi^{0} \mathrm{p}$ for E$_{\gamma}$=320$-$650 MeV

The MAINZ-A2 collaboration Gardner, S. ; Howdle, D. ; Sikora, M.H. ; et al.
Eur.Phys.J.A 52 (2016) 333, 2016.
Inspire Record 1472369 DOI 10.17182/hepdata.129289

High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\check{\mathrm{\Sigma}}$ (= $\sigma_{0}\mathrm{\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.

78 data tables

Photon beam asymmetry Sigma at W=1.2159988 GeV

Photon beam asymmetry Sigma at W=1.2194968 GeV

Photon beam asymmetry Sigma at W=1.2225014 GeV

More…

Study of the process $e^+e^-\to\omega\eta\pi^0$ in the energy range $\sqrt{s} <2$ GeV with the SND detector

Achasov, M.N. ; Aulchenko, V.M. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 94 (2016) 032010, 2016.
Inspire Record 1471515 DOI 10.17182/hepdata.82577

The process $e^+e^-\to\omega\eta\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\to\omega\eta\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \to \omega\eta\pi^0$ is found to be $\omega a_0(980)$.

1 data table

The energy interval, integrated luminosity ($L$), number of selected events ($N$), estimated number of background events ($N_{bkg}$), detection efficiency for $e^+e^-\to\omega\eta\pi^0\to 7\gamma$ events ($\epsilon$), radiative correction ($\delta+1$), and $e^+e^-\to\omega\eta\pi^0$ Born cross section ($\sigma$). The shown cross-section errors are statistical. The systematic error is 4.2%. The 90% confidence level upper limits are listed for the first two energy intervals.


Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

34 data tables

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles, after correcting for back-to-back jet correlations, estimated from the 10 $\leq$ $N_{offline}^{trk}$ < 20 range.

The second-order Fourier coefficients, $V_{3\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

More…

Version 2
Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2017) 096, 2017.
Inspire Record 1471281 DOI 10.17182/hepdata.77221

The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at sqrt(s) = 8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4 +/- 0.5 inverse picobarns. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W- to W+ and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.

9 data tables

Normalized fiducial differential cross sections of W+ boson and W- boson decaying to electron plus neutrino and positron plus neutrino respectively at the pre-FSR level.

Normalized fiducial differential cross sections of W+ boson and W- boson decaying to muon and neutrino at pre-FSR level.

Normalized fiducial differential cross sections of Z0 boson decaying to dimuon at pre-FSR level.

More…

Measurements of the S-wave fraction in $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$ decays and the $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ differential branching fraction

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 11 (2016) 047, 2016.
Inspire Record 1469448 DOI 10.17182/hepdata.82576

A measurement of the differential branching fraction of the decay ${B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}}$ is presented together with a determination of the S-wave fraction of the $K^+\pi^-$ system in the decay $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$. The analysis is based on $pp$-collision data corresponding to an integrated luminosity of 3\,fb$^{-1}$ collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, $q^2$. Precise theoretical predictions for the differential branching fraction of $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ decays are available for the $q^2$ region $1.1

2 data tables

S-wave fraction ($F_{\rm S}$) in bins of $q^2$ for two $m_{K\pi}$ regions. The first uncertainty is statistical and the second systematic.

Differential branching fraction of $B^0 \to K^*(892)^0 \mu^+ \mu^-$ decays in bins of $q^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^{*0}$ and $J/\psi \to \mu^+ \mu^-$ branching fractions.


Production of deuterium, tritium, and $^3$He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS

The NA49 collaboration Anticic, T. ; Baatar, B. ; Bartke, J. ; et al.
Phys.Rev.C 94 (2016) 044906, 2016.
Inspire Record 1469272 DOI 10.17182/hepdata.88359

Production of $d$, $t$, and $^3$He nuclei in central Pb+Pb interactions was studied at five collision energies ($\sqrt{s_{NN}}=$ 6.3, 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. The coalescence parameters $B_2$ and $B_3$, as well as coalescence radii for $d$ and $^3$He were determined as a function of transverse mass at all energies.

103 data tables

Numerical data for the transverse momentum spectra of helium-3 in rapidity interval

Numerical data for the transverse momentum spectra of helium-3 in rapidity interval

Numerical data for the transverse momentum spectra of helium-3 in rapidity interval

More…

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at sqrt(s) = 8 TeV using H to WW decays

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 03 (2017) 032, 2017.
Inspire Record 1467451 DOI 10.17182/hepdata.77058

The cross section for Higgs boson production in pp collisions is studied using the H to WW decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 inverse femtobarns. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 +/- 8 (stat) +/- 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model.

3 data tables

The fiducial differential cross section in each Higgs pT bin. The first uncertainty is the total (stat+syst) uncertainty. The second is the statistical uncertainty and the third and fourth are Type A and Type B systematic uncertainties, respectively. The last one is the model dependence uncertainty (Type C).

The measured total cross section in the fiducial region. The first systematic uncertainty is the statistical uncertainty and the second is the systematic.

Correlation matrix among the Higgs pT bins of the differential spectrum.


Study of $\chi_{bJ}(1P)$ Properties in the Radiative $\Upsilon(2S)$ Decays

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
BELLE-CONF-1604, 2016.
Inspire Record 1467448 DOI 10.17182/hepdata.82574

We report a study of radiative decays of \chi_{bJ}(1P)(J=0,1,2) mesons into 74 hadronic final states comprising charged and neutral pions, kaons, protons; out of these, 41 modes are observed with at least 5 standard deviation significance. Our measurements not only improve the previous measurements by the CLEO Collaboration but also lead to first observations in many new modes. The large sample allows us to probe the total decay width of the \chi_{b0}(1P). In the absence of a statistically significant result, a 90% confidence-level upper limit is set on the width at \Gamma_{total}< 2.4 MeV. Our results are based on 24.7 fb^{-1} of e+e- collision data recorded by the Belle detector at the \Upsilon(2S) resonance, corresponding to (157.8\pm3.6)\times10^6 \Upsilon(2S) decays.

3 data tables

Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b0}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b0}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.

Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b1}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b1}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.

Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b2}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b2}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.