The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading-order is 0.90 $\pm$ 0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-eight effective field theory operators and on the production of doubly charged Higgs bosons.
The measured W+W+ EWK fiducual cross section.
Data and estimated signal and background yields after the selection in the two dimensional dijet-dilepton mass distributions. This is used for the standard model measurements.
Data and estimated signal and background yields after the selection in the one dimensional dilepton mass distribution. This is used for the evaluation of the anomalous coupling limits.
We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter $\lambda$, the L\'evy index of stability $\alpha$ and the L\'evy length scale parameter $R$ as a function of average transverse mass of the pair $m_T$. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The $\lambda(m_T)$ measurements indicate a decrease of the strength of the correlations at low $m_T$. The L\'evy length scale parameter $R(m_T)$ decreases with increasing $m_T$, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability $\alpha$ are found to be significantly lower than the Gaussian case of $\alpha=2$, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.
Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.
Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.
Correlation strength parameter $\lambda$ versus average $m_T$ of the pair, for 0%-30% centrality collisions. Statistical and systematic uncertainties are shown as bars and boxes.
An inclusive search for the standard model Higgs boson ($\mathrm{H}$) produced with large transverse momentum ($p_\mathrm{T}$) and decaying to a bottom quark-antiquark pair ($\mathrm{b}\overline{\mathrm{b}}$) is performed using a data set of pp collisions at $\sqrt{s}=$ 13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $\mathrm{b}\overline{\mathrm{b}}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated $\mathrm{b}$ tagging techniques. The method is validated with $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ decays. The $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}}$ with $p_\mathrm{T} > $450 GeV and in the pseudorapidity range $-$2.5 $< \eta <$ 2.5 is 74 $\pm$ 48 (stat) $_{-10}^{+17}$ (syst) fb, which is consistent within uncertainties with the standard model prediction.
Fitted signal strength, expected and observed significance of the Higgs and Z boson signal. The 95% confidence level upper limit (UL) on the Higgs boson signal strength is also listed.
The $m_{SD}$ distributions in data for the failing (left) and passing (right) regions and combined $p_{T}$ categories. The QCD multijet background in the passing region is predicted using the failing region and the pass-fail ratio $R_{p/f}$. The features at 166 and 180 GeV in the $m_{SD}$ distribution are due to the kinematic selection on $\rho$, which affects each $p_{T}$ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.
The $m_{SD}$ distributions in data for the failing (left) and passing (right) regions and combined $p_{T}$ categories. The QCD multijet background in the passing region is predicted using the failing region and the pass-fail ratio $R_{p/f}$. The features at 166 and 180 GeV in the $m_{SD}$ distribution are due to the kinematic selection on $\rho$, which affects each $p_{T}$ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ test beam (dE/dx). Statistical uncertainties as vertical error bars.
Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ test beam (dE/dx + TR). Statistical uncertainties as vertical error bars.
Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ and proton in pp collisions ($\sqrt{s} = 7$ TeV). Statistical uncertainties as vertical error bars. Uncertainties in momentum and thus $\beta \gamma$ determination are drawn as horizontal error bars.
The polarization of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S) $mesons, produced in $pp$ collisions at centre-of-mass energies $\sqrt{s}$=7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2fb$^{-1}$, respectively. The measurements are performed in three polarization frames, using $\Upsilon\to\mu^+\mu^-$ decays in the kinematic region of the transverse momentum $p_{T}(\Upsilon)<30GeV/c$, and rapidity $2.2<y(\Upsilon)<4.5$. No large polarization is observed.
The polarization parameter $\lambda_{\theta}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second is systematic.
The polarization parameter $\lambda_{\theta\phi}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second represents the systematic uncertainty.
The polarization parameter $\lambda_{\phi}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second is systematic.
Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean ($M$), variance ($\sigma^2$), skewness ($S$), and kurtosis ($\kappa$) for net-kaon multiplicity distributions as well as the ratio $\sigma^2/M$ and the products $S\sigma$ and $\kappa\sigma^2$ are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.
Raw $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 GeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions. The measurements are compared to various predictions from event generators and analytical calculations.
Groomed jet energy fraction in pp and PbPb collisions for jets with PTJET 160-180 GeV.
Self-normalized zg distribution in pp collisions for jets with PTJET 160-180 GeV.
Self-normalized zg distributions in PbPb and smeared pp collisions in the 50-80 centrality event class for jets with PTJET 160-180 GeV.
Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum ($p_\mathrm{t}$) difference, and the $p_\mathrm{t}$ average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a $v_2$-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the $v_2$-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.
Three-particle correlation with respect to the 2nd order event plane from Pb-going side in pPb collisions.
Three-particle correlation with respect to the 2nd order event plane from p-going side in pPb collisions.
Three-particle correlation with respect to the 2nd order event plane in PbPb collisions.
We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.
Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.
Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.
Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.
Recently, multiparticle-correlation measurements of relativistic $p/d/^3$He$+$Au, $p$$+$Pb, and even $p$$+$$p$ collisions have shown surprising collective signatures. Here we present beam-energy-scan measurements of 2-, 4-, and 6-particle angular correlations in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200, 62.4, 39, and 19.6 GeV. We also present measurements of 2- and 4-particle angular correlations in $p$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. We find the 4-particle cumulant to be real-valued for $d$$+$Au collisions at all four energies. We also find that the 4-particle cumulant in $p$$+$Au has the opposite sign as that in $d$$+$Au, indicating that the correlations are geometrical and therefore collective in origin. Further we find that the 6-particle cumulant agrees with the 4-particle cumulant in $d$$+$Au collisions at 200 GeV, which indicates that nonflow effects are subdominant and provides strong evidence of collectivity.
Components $\langle\langle$4$\rangle\rangle$ and 2$\langle\langle$2$\rangle\rangle^{2}$ and cumulant $c_2${4} = $\langle\langle$4$\rangle\rangle$ - 2$\langle\langle$2$\rangle\rangle^{2}$ as a function of $N^{FVTX}_{tracks}$. (a) and (b) show the components and cumulant, respectively, in $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (c) and (d) show the components and cumulant, respectively, in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (b) and (d) also show the cumulant as measured in AMPT for $p$+Au and $d$+Au, respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.
Components $\langle\langle$4$\rangle\rangle$ and 2$\langle\langle$2$\rangle\rangle^{2}$ and cumulant $c_2${4} = $\langle\langle$4$\rangle\rangle$ - 2$\langle\langle$2$\rangle\rangle^{2}$ as a function of $N^{FVTX}_{tracks}$. (a) and (b) show the components and cumulant, respectively, in $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (c) and (d) show the components and cumulant, respectively, in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (b) and (d) also show the cumulant as measured in AMPT for $p$+Au and $d$+Au, respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.
$v_2${2}, $v_2${2, |$\Delta\eta$| > 2}, and $v_2${4} as a function of $N^{FVTX}_{tracks}$ in $d$+Au collisions with $\sqrt{s_{NN}}$= (a) 200 GeV, (b) 62.4 GeV, (c) 39 GeV, and (d) 19.6 GeV; also shown in (a) is $v_2${6} for $\sqrt{s_{NN}}$= 200 GeV. The arrowheads on the statistical uncertainties indicate cases where the standard 1$\sigma$ uncertainty on the $c_2${4} crosses zero. For 19.6 GeV, the combined confidence interval for $v_2${4} to be real is 79%.