We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.
With a sample of about 2000( γ + γ ′+ γ ″) events observed in π-W interactions at 286GeV/ c , the ratio ( γ ′+ γ ″)/ γ =0.51±0.07, the branching ratio times the inclusive total cross section Bσ =(386±17±85) pb per W nucleus, as well as the differential cross sections in χ F and p T have been measured. These results are compared with previous data obtained with the same apparatus at a lower beam momentum (194 GeV/ c ). Both data sets are compared with a theoretical calculation (“duality model”) which also allows one to extract the shape parameter β g of the gluon distribution in the pion. β g is found to be 2.3 −0.3 +0.4 (stat.) −0.5 +0.1 (syst.).
No description provided.
A study of τ-lepton production in the CMS energy region from 14 to 46.8 GeV at PETRA is reported. The cross section, the decay branching ratio into μν ν , and the electroweak parameters are determined with a total integrated luminosity of 115 pb −1 .
Total cross section calculated from measured channel cross section assuming BR(tau-mu) = 17.6 pct. SIG(Q=MU) is the QED point cross section.
No description provided.
No description provided.
We use the reaction e+e−→hadrons, in the Mark J detector at the DESY electron-positron collider PETRA, to determine the hadronic cross section up to 46.78 GeV. The production of a top quark with a charge equal to (2/3) is excluded up to 46.6 GeV with 95% C.L. The observed rise in the cross section at higher energies is consistent with the electroweak prediction for a Z0 mass of 93 GeV. We describe some unusual muon inclusive events.
Errors are statistical only.
Energy scan of R.
Inclusive muon cross section.
Results are presented of a measurement of the production of D*+ (D*−) in 250-GeV/c π−N interactions. We observe 2.1±7.8 events corresponding to a charge-D* cross section σ(D*) of 0.4±1.5 μb/nucleon. When averaged with our previous measurement made at 200 GeV/c, the result is σ(D*)=2.3±1.0 μb/nucleon with (dσ/dx)‖x=0=4.6±2.0 μb.
THIS DATA FROM PREVIOUS PUBLICATION : PRL 46, 761 (1981).
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The energy distribution of inclusive hadrons produced by 280 GeV muons on hydrogen and deuterium targets are compared. The sum of the scaled energy distributions of the positive and negative hadrons is found to be the same for the two targets. The difference of these distributions is observed to factorise inx andz and thez-dependence is found to be independent of the target type and have a form (1−z)2.1±0.2. The net charge of the hadronic jet is positive at highx even in the case when the scattering takes place on the neutron. These results are in good agreement with the expectations of the Quark Parton Model.
No description provided.
No description provided.
No description provided.
An analysis of the three leptonic reactionse+e−→e+e−,μ+μ− andτ+τ− over a wide range of energy,\(12< \sqrt s< 46.78 GeV\) is presented. The data were obtained with the JADE detector at thee+e− storage ring PETRA. They are compared to predictions of electroweak theories, in particular the standard model. For the total cross-sections of all three reactions and for the differential cross-section of Bhabha scattering no deviation from QED is found over the entire energy range. The differential cross-sections of μ and τ pairs at high energies show the angular asymmetry predicted by electroweak interference. The axial-vector and vector weak coupling constant, sin2θW andMZ are determined and compared to other measurements. Finally, limits on deviations from the standard model are given.
No description provided.
No description provided.
No description provided.
For the reaction π−N→V0X, where V0 is a Ks0, Λ, and Λ¯ and X are charged particles, we measured the transverse- and longitudinal-momentum distributions, and inclusive cross sections for the V0 and for K*±(892), Σ±(1385), and Ξ±(1321). We compare our results with predictions of quark-counting rules, and conclude that valence quarks play an important role in strange-particle production.
No description provided.
The production and decay of τ-pairs was studied with the JADE detector at PETRA at center-of-mass energies of 30 ⩽√ s ⩽ 46.78 GeV. The total production cross section for τ-pairs agreed with QED predictions to order α 3 . Lower limits on QED cut-off parameters of Λ + > 285 GeV and Λ − > 210 GeV at 95% confidence level were ontained. The decay branching fractions into one and three charged particles were determined to be (86.1 ± 0.5 ± 0.9)% and (13.6±0.5 ±0.80)%. In the angular distributions a forward-backward asymmetry was observed, from which the axial-vector weak charge to the τ was determined to be a τ = −0.74 ± 0.22 in agreement with the standard model. An analysis of the process e + e − → τ + τ − γ showed agreement with QED calculations to O(α 3 ).
Includes data from earlier analysis at lower energy - M. Nozaki - Tokyo - UTLICEPP-82-02.
Angular distributions - data requested from authors.
Forward-backward asymmetry determined from fit to angular distribution of form N*(1 + cos(theta)**2 + (3/8)*A*cos(theta)).