Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib
No description provided.
No description provided.
No description provided.
The inclusive production of Λ , K S 0 , Σ ± (1385) and K ∗± (892) in π − p interactions at 6 GeV/ c has been studied. The observed cross sections are: σ ( Λ )=0.94±0.06 mb, σ (K S 0 )=0.98±0.06 mb, σ ( Σ + (1385))=60±7 μb , σ ( Σ − (1385))=90±9 μ b, σ( K ∗+ (892))=216±28 μ b and σ( K ∗− (892))=41±8 μ b , respectively. The inclusive spectra of these particles are presented as functions of squared transverse momentum and Feynman scaling variable x . The polarization of Λ has also been investigated. It is found from a comparison with higher-energy data that the inclusive cross sections for Σ ± (1385) and the production ratios Σ ± (1385)/ Λ in π − p at 6 GeV/ c have not reached the high-energy limiting values.
No description provided.
No description provided.
No description provided.
Antineutrino interactions in BEBC are compared to look for differences between the differential cross sections per nucleon in neon and in deuterium. The identical geometries, beam spectra and muon identification criteria and acceptances allow comparison with very small systematic errors. The results are compared in detail with μ and e scattering data from EMC and SLAC. We find no rise in the ratio d σ/ d x ( ν Ne )/σ/ d x ( ν D 2 ) at low x , independent of Q 2 up to Q 2 ∼ 14 GeV 2 .
VALUES OF Q**2 IN THIS TABLE ARE :- 1.07,2.59,4.33,6.14,7.67,8.28,6.35 (FOR ALL Q**2) AND :-,7.9,9.5,11.5,13.2,13.9,11.6 (FOR Q**2 > 4.5 ).
BEBC filled in turn with hydrogen, and with a neon-hydrogen mixture, was exposed to the CERN SPS wide band neutrino and antineutrino beams. The ratios of the charged-current cross sections per nucleon, σ(νH 2 ) σ(ν Ne ) and σ( ν H 2 ) σ( ν Ne ) , between 20 and 300 GeV were found to be 0.656 ± 0.020 and 1.425 ± 0.052, respectively. Multiplying these ratios by the revised cross sections in neon, σ(ν Ne ) E = (0.723 ± 0.038) × 10 −38 cm 2 / GeV per nucleon and σ( ν Ne ) E = (0.351 ± 0.019) × 10 −38 cm 2 / GeV per nucleon, and their ratio, σ( ν Ne ) σ(ν Ne ) = 0.485 ± 0.020 ,, yields values for the total charged-current cross sections on protons, σ(νp)/ E and σ( ν p ) E , of (0.474 ± 0.029) × 10 −38 cm 2 /GeV and (0.500 ± 0.032) × 10 −38 cm 2 /GeV. respectively, and a value for the ratio σ( ν p ) σ(ν p ) of 1.053 ± 0.066.
No description provided.
An analysis of the K 0 K 0 system at threshold produced in the final states p p → K S 0 K S 0 ( n π) at 700–760 MeV/ c , is presented. A simultaneous fit to the ππ phase shifts and inelasticities and to the K S 0 K S 0 effective-mass distributions using parametrizations which take into account the analytical and unitarity properties of the I = 0 S-wave amplitudes is performed. The behaviour of the eigenphases and the unphysical Riemann sheet structure for different solutions is studied.
No description provided.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI+ PI-> FINAL STATE.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI0> FINAL STATE.
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.
No description provided.
No description provided.
No description provided.
About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the v μ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for v μ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result R P v = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.18 ± 0.04.
No description provided.
The production of the φ and ω mesons has been studied in the reactions p p → φ(ω)π + π − and p p → φ(ω) ϱ 0 at 0.70–0.76 GeV /c . The c.m. angular distribution of the φ meson in the reaction p p → φπ + π − is found to be consistent with isotropy. The corresponding distribution for ω is not. the ratio σ( p p → φπ + π − ) σ( p p → ωπ + π − ) is (10 ± 2.4) · 10 −3 , which leads to a value of (19 ± 5) · 10 −3 when corrected for the phase-space factor. Implications of this result for the OZI rule are discussed.
No description provided.
No description provided.