A search for new phenomena in events with two same-charge leptons or three leptons and jets identified as originating from $b$-quarks in a data sample of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}= 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No significant excess is found and limits are set on vector-like quark, four-top-quark, and same-sign top-quark pair production. The observed (expected) 95% CL mass limits for a vector-like $T$- and $B$-quark singlet are $m_T > 0.98$ $(0.99)$ TeV and $m_B > 1.00$ $(1.01)$ TeV respectively. Limits on the production of the vector-like $T_{5/3}$-quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the $T_{5/3}$-quark is (expected to be) 1.19 (1.21) TeV. The Standard Model four-top-quark production cross-section upper limit is (expected to be) 69 (29) fb. Constraints are also set on exotic four-top-quark production models. Finally, limits are set on same-sign top-quark pair production. The upper limit on $uu \to tt$ production is (expected to be) 89 (59) fb for a mediator mass of 1 TeV, and a dark-matter interpretation is also derived, excluding a mediator of 3 TeV with a dark-sector coupling of 1.0 and a coupling to ordinary matter above 0.31.
Expected and observed limits on vector-like B-quark pair production as a function of mass, assuming the branching ratios expected in the singlet model.
Expected and observed limits on vector-like T-quark pair production as a function of mass, assuming the branching ratios expected in the singlet model.
Expected and observed limits on vector-like T5/3 pair production as a function of mass, assuming a branching ratio B(T5/3 -> Wt) = 100%.
The modification of the production of $J/\psi$, $\psi(\mathrm{2S})$, and $\mit{\Upsilon}(n\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\mathrm{nb}^{-1}$ and $25$ $\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\psi$ and $\psi(\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\mathrm{Pb}}$ for $J/\psi$ and $\mit{\Upsilon}(\mathrm{1S})$. No significant modification of the $J/\psi$ production is observed while $\mit{\Upsilon}(\mathrm{1S})$ production is found to be suppressed at low transverse momentum in $p$+Pb collisions relative to $pp$ collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central $p$+Pb collisions.
Summary of results for prompt Psi(2S) to J/psi double ratio in p+Pb collisions at 5.02 TeV as a function of center-of-mass rapidity. Uncertainties are statistical and systematic, respectively.
A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.
The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.
The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.
The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.
Measurements of differential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from $pp$ collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.
Statistical correlation matrix between $p_{T}^{t\bar{t}}$ in the 4-jet exclusive configuration and $p_{T}^{t,had}$ in the 6-jet inclusive configuration, obtained through the Bootstrap Method.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.
The signal efficiency for the production modes (gluon-gluon fusion and b-associated production) and the signal regions used in the analysis. The efficiency denominator has the total number of generated MC events. The numerator includes the events passing the full signal region selection, including the mbb window cuts. The table shows for each signal mass pair (mA, mH) 3 efficiencies corresponding to the two production modes in the two categories, 2tag and 3tag. These corresponds to "nb = 2 category" and "nb >= 3 category", respectively, of the preprint. No numbers for gluon-gluon fusion in the 3tag category are provided since those are not used in the analysis. The efficiencies are given in fractions.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced in association with b-quarks. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the combination of the nb=2 and nb>=3 categories.
A search for vectorlike quarks is presented, which targets their decay into a $Z$ boson and a third-generation Standard Model quark. In the case of a vectorlike quark $T$ ($B$) with charge $+2/3e$ ($-1/3e$), the decay searched for is $T \rightarrow Zt$ ($B \rightarrow Zb$). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The final state used is characterized by the presence of $b$-tagged jets, as well as a $Z$ boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as - in the case of the single-production selections - the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of $m_T > 1030$ GeV ($m_T > 1210$ GeV) and $m_B > 1010$ GeV ($m_B > 1140$ GeV) in the singlet (doublet) model. In the case of 100% branching ratio for $T\rightarrow Zt$ ($B\rightarrow Zb$), the limits are $m_T > 1340$ GeV ($m_B > 1220$ GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses.
Comparison of the distribution of the scalar sum of small-$R$ jet transverse momenta, $H_T$, between data and the background prediction in the 0-large-$R$ jet-signal region of the pair-production (PP) $2\ell$ $0-1$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $H_T$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.
Comparison of the distribution of the scalar sum of small-$R$ jet transverse momenta, $H_T$, between data and the background prediction in the 1-large-$R$ jet-signal region of the pair-production (PP) $2\ell$ $0-1$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $H_T$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.
Comparison of the distribution of the invariant mass of the $Z$ boson candidate and the highest-$p_T$ $b$-tagged jet, $m(Zb)$, between data and the background prediction in the signal region of the pair-production (PP) $2\ell$ $\geq 2$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $m(Zb)$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.
Many extensions of the Standard Model predict new resonances decaying to a $Z$, $W$, or Higgs boson and a photon. This paper presents a search for such resonances produced in $pp$ collisions at $\sqrt{s} = 13$ $\mathrm{TeV}$ using a dataset with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the Large Hadron Collider. The $Z/W/H$ bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to $Z/W+\gamma$ in the mass range from 1.0 to 6.8 $\mathrm{TeV}$, and for the first time into $H+\gamma$ in the mass range from 1.0 to 3.0 $\mathrm{TeV}$.
The 95% CL upper limits on cross section times branching ratio for gluon-gluon fusion production spin-2 resonance decaying to Zgamma.
The 95% CL upper limits on cross section times branching ratio for quark-antiquark annihilation production spin-2 resonance decaying to Zgamma.
Searches for non-resonant and resonant Higgs boson pair production are performed in the $\gamma\gamma WW^{*}$ channel with the final state of $\gamma\gamma\ell\nu jj$ using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence-level observed upper limit of 7.7 pb is set on the cross section for non-resonant production, while the expected limit is 5.4 pb. A search for a narrow-width resonance $X$ decaying to a pair of Standard Model Higgs bosons $HH$ is performed with the same set of data, and the observed upper limits on $\sigma(pp \rightarrow X) \times B(X \rightarrow HH)$ range between 40.0 pb and 6.1 pb for masses of the resonance between 260 GeV and 500 GeV, while the expected limits range between 17.6 pb and 4.4 pb. When deriving the limits above, the Standard Model branching ratios of the $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{*}$ are assumed.
Observed and expected 95% CL upper limits on the cross-section of gluon-fusion initialted resonant production of the mass of the resonance times the branch ratio (BR) of X to HH with assuming the BR of H to gammagamma and H to WW.
Observed and expected 95% CL upper limits on the cross-section of gluon-fusion initialted resonant production of the mass of the resonance times the branch ratio of X to HH and the BR of HH to gammagamma WW, without assuming the BR of H to gammagamma and H to WW.
A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino.
A search for direct pair production of top squarks in final states with two tau leptons, $b$-jets, and missing transverse momentum is presented. The analysis is based on proton-proton collision data at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. Two exclusive channels with either two hadronically decaying tau leptons or one hadronically and one leptonically decaying tau lepton are considered. No significant deviation from the Standard Model predictions is observed in the data. The analysis results are interpreted in terms of model-independent limits and used to derive exclusion limits on the masses of the top squark $\tilde t_1$ and the tau slepton $\tilde \tau_1$ in a simplified model of supersymmetry with a nearly massless gravitino. In this model, masses up to $m(\tilde t_1) = 1.16$ TeV and $m(\tilde \tau_1) = 1.00$ TeV are excluded at 95% confidence level.
Signal acceptance A in percent for the signal region of the lep-had channel. The signal acceptance A is determined from a generator-level implementation of the analysis. It includes the branching ratios for the decays of the tau leptons. The selection efficiency ε is calculated using reconstructed objects, i.e. including all detector effects, and defined such that the event yields in the signal regions are given by the product A · ε · N<sub>signal</sub>, where N<sub>signal</sub> = σ · 36.1 fb<sup>-1</sup> and σ is the theoretical prediction for the production cross section of top-squark pairs with the mass given on the horizontal axis.
Signal acceptance A in percent for the signal region of the had-had channel. The signal acceptance A is determined from a generator-level implementation of the analysis. It includes the branching ratios for the decays of the tau leptons. The selection efficiency ε is calculated using reconstructed objects, i.e. including all detector effects, and defined such that the event yields in the signal regions are given by the product A · ε · N<sub>signal</sub>, where N<sub>signal</sub> = σ · 36.1 fb<sup>-1</sup> and σ is the theoretical prediction for the production cross section of top-squark pairs with the mass given on the horizontal axis.
Reconstruction efficiency ε in percent for the signal region of the lep-had channel. The signal acceptance A is determined from a generator-level implementation of the analysis. It includes the branching ratios for the decays of the tau leptons. The selection efficiency ε is calculated using reconstructed objects, i.e. including all detector effects, and defined such that the event yields in the signal regions are given by the product A · ε · N<sub>signal</sub>, where N<sub>signal</sub> = σ · 36.1 fb<sup>-1</sup> and σ is the theoretical prediction for the production cross section of top-squark pairs with the mass given on the horizontal axis.