Proton-proton elastic scattering has been measured over the angular range 7 to 16 mrad at centre-of-mass energies of 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The results indicate that the diffraction peak has continued to shrink with increasing energy, but not as fast as suggested by the results at lower energies.
No description provided.
Data on the polarization parameter in pp elastic scattering in the | t |-range from ∼0.1 to ∼ 2.9 (GeV/ c ) 2 and at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in π − p and π + p forward elastic scattering at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
None
No description provided.
We have made measurements of polarization in π−p elastic scattering, with emphasis over the backward region, at 1.60 to 2.28 GeVc. The results indicate the absence of u-channel dominance in the backward region, as was observed in the case of π+p scattering. Comparisons have been made with predictions of various phase-shift analyses which show that the agreement is generally very poor in the backward region.
No description provided.
No description provided.
No description provided.
Small angle elastic scattering events have been observed at the CERN Intersecting Storage Rings. Directions of both particles as well as the collision vertex are reconstructed with the help of four sets of spark chambers, two for each of the two arms. The elastic nature of the events is demonstrated by a collinearity requirement. We find values for the (diffraction) slope parameter in disagreement with the simple linear extrapolation of lower energy (Surpukov) data.
NUMBER OF EVENTS 87364.
NUMBER OF EVENTS 8305.
No description provided.
New results are presented on the reaction π+p→η0Δ++ between 1.2 and 2.67 GeVc. The data above 2 GeVc, when combined with some existing data, give evidence for a dip in the t distribution near t=−1.5 (GeVc).2 This dip, and other features of the data, are adequately described by an A2 Regge-pole model. The effective A2 trajectory is calculated and found to disagree with that obtained from the reaction π−p→η0n.
No description provided.
A study of the A2+ mass spectrum in π+p interactions at 3.7 GeVc is presented. For a cut of t′=0.1−2.0 GeV2 and on eliminating the Δ++ we find that the three-pion mass spectrum in the A2+ region is fitted by the dipole formula with a confidence level of 53% and a single Breit-Wigner formula with a confidence level of 11%. Our result thus favors A2+ splitting although a single Breit-Wigner fit cannot be ruled out. We also report the A2+ decay branching fractions measured over all t′ values. They are 0.78 ± 0.05, 0.15 ± 0.04, 0.06 ± 0.03, and < 0.02 for ρπ, ηπ, KK¯, and η′π, respectively, in good agreement with other experiments.
No description provided.
Data at two additional π+ momenta (1.28 and 1.41 GeVc) in the reaction π+p→Σ+K+ are presented. Charge independence is tested over the c.m. energy range 1.820 to 2.090 GeV; we used our data for the Σ+K+ channel and published data for the π−p→Σ0K0 and Σ−K+ channels.
No description provided.
No description provided.