The total hadronic cross section in e + e − annihilation has been measured at s = 57.77 GeV using 290 pb −1 data sample collected with the VENUS detector at KEK TRISTAN. The cross section obtained is 140.3 ±1.8 pb for s ′/ s ≥0.5, where s ′ is the square of the invariant mass of the final state hadrons. The present result together with the recent results from the LEP collaborations is used to determine the hadronic γ − Z 0 interference parameter, j tot had , to be 0.196±0.083. The result is in good agreement with the Standard Model prediction of 0.220.
We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.
We studied the energy-energy correlation (EEC) and its asymmetry (AEEC) using e + e − hadronic annihilation events obtained at √ s =53.3 GeV and 59.5 GeV with the TOPAZ detector at the TRISTAN collider. We used a Monte Carlo simulation combined with the QCD matrix elements by Gottschalk and Shatz and the Lund string fragmentation model. By comparing the experimental data with simulated events, we determined the strong coupling constant α s at both energies. The results are 0.129±0.007 (stat) ±0.010 (syst) at √ s =53.3 GeV and 0.122±0.008 (stat) ±0.010 (syst) at 59.5 GeV.
Results are presented from the first p p colliding beam runs at the CERN ISR, using the UA5 streamer chamber detector. p p interactions at s = 53 GeV are compared with pp data taken in the same experiment. The results are in good agreement with extrapolations of low-energy p p data.
The ratio R of the total cross section for e+e− annihilation into hadrons to the lowest-order QED cross section for e+e−→μ+μ− has been measured for center-of-mass energies ranging from 50 to 61.4 GeV. If we allow for an overall shift of —4.9%, about 1.5 times our estimated normalization error, the results are consistent with the standard-model predictions.
We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.
The multiplicities of charged secondaries in proton-proton collisions were determined using the split-field-magnet detector at the CERN Intersecting Storage Rings (ISR). Measurements are presented on multiplicity distributions both for inelastic and non-single-diffractive events at four different energies s=30.4, 44.5, 52.6, and 62.2 GeV. The results reported here represent the first high-statistics measurement of charged multiplicity distributions at ISR energies with a magnetic detector covering nearly the full solid angle.
Measurements of pp→μ+μ−+X at s=44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN intersecting storage rings and confirm scaling to 5%. The observed μ+μ− yield is a factor of 1.6±0.2 larger than estimated from a simple parton model but is consistent with QCD. The pT dependence of the muon pairs agrees well with expectations from QCD.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .