High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\check{\mathrm{\Sigma}}$ (= $\sigma_{0}\mathrm{\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.
Photon beam asymmetry Sigma at W=1.2159988 GeV
Photon beam asymmetry Sigma at W=1.2194968 GeV
Photon beam asymmetry Sigma at W=1.2225014 GeV
The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed.
Target asymmetry T for c.m. energy W= 1.3062 GeV
Target asymmetry T for c.m. energy W= 1.3275 GeV
Target asymmetry T for c.m. energy W= 1.3486 GeV
The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.
Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.
Polarisation-dependent differential cross sections σT associated with the target asymmetry T have been measured for the reaction γp→→pπ0 with transverse target polarisation from π0 threshold to photon energies of 190 MeV. The data were obtained using a frozen-spin butanol target with the Crystal Ball / TAPS detector set-up and the Glasgow photon tagging system at the Mainz Microtron MAMI. Results for σT have been used in combination with our previous measurements of the unpolarised cross section σ0 and the beam asymmetry Σ for a model-independent determination of S - and P -wave multipoles in the π0 threshold region, which includes for the first time a direct determination of the imaginary part of the E0+ multipole.
Target asymmetry T for c.m. cos(Theta_pi0)= 0.996
Target asymmetry T for c.m. cos(Theta_pi0)= 0.966
Target asymmetry T for c.m. cos(Theta_pi0)= 0.906
Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .
No description provided.
No description provided.
No description provided.
New measurements of the polarization of the recoil protons from the reaction γ + p → π o + p are reported for the region of the first resonance. These measurements are an extension of earlier experiments, done on the 500 MeV-electron-synchroton. More data have been taken at photon energies of 240, 300, 360 and 420 MeV.
No description provided.
We report a measurement of the differential cross section of $\pi^0$ pair production in single-tag two-photon collisions, $\gamma^* \gamma \to \pi^0 \pi^0$, in $e^+ e^-$ scattering. The cross section is measured for $Q^2$ up to 30 GeV$^2$, where $Q^2$ is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV < W < 2.1 GeV and $|\cos \theta^*|$ < 1.0 for the total energy and pion scattering angle, respectively, in the $\gamma^* \gamma$ center-of-mass system. The results are based on a data sample of 759 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The transition form factor of the $f_0(980)$ and that of the $f_2(1270)$ with the helicity-0, -1, and -2 components separately are measured for the first time and are compared with theoretical calculations.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=3.45 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=4.46 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=5.47 GeV$^2$.
The cross section for the reaction 2H(γ, p)n has been measured at laboratory photon energies Eγ = 133−158 MeV and c.m. angles between 30° and 150°. The reaction was induced by a tagged bremsstrahlung photon beam incident on a liquid deuterium target. The uncertainty in the absolute cross sections is ⩽ 5%. There is now reasonable agreement between recent measurements in this energy region and the overall data set now defines the cross section sufficiently well to provide a test of current models of the reaction.
No description provided.
No description provided.
The differential cross section of the reaction γ + p → p + πo has been measured at the Deutsches Elektronen- Synchrotron, Hamburg, at mean phonon energies of 1.36, 2.0 and 3.0 GeV and pion center of mass angles between 0o and 70o. The results are compared with some theoretical calculations based on elementary and reggeized 1- meson exchange.
Axis error includes +- 12/12 contribution.
Axis error includes +- 12/12 contribution.
Axis error includes +- 12/12 contribution.
The differential cross-section of the reaction γ + p → p + π 0 was measured at the Deutsches Elektronen-Synchrotron, Hamburg, at mean photon energies of 4.0, 5.0 and 5.8 GeV and pion center of mass angles between 0° and 60°. The results are compared wiht theoretical calculations based on Reggeized vector meson exchange.
Axis error includes +- 7/7 contribution.
Axis error includes +- 7/7 contribution.
Axis error includes +- 7/7 contribution.