αα elastic scattering was measured at 4.32 GeV/ c and 5.07 GeV/ c incident momenta. The four-momentum transfer range, extending from −0.05 to −0.77 (GeV/ c ) 2 , covers the first and second minimum regions. The results are compared with calculations based on Glauber theory.
ERRORS SHOWN INCLUDE STATISTICAL ERRORS, QUASIELASTIC CONTRIBUTION SUBTRACTION ERROR, AND AN ASSYMETRIC ERROR RESULTING FROM THE UNCERTAINTIES AS TO THE ORIGIN OF THE WIDENING OF THE ELASTIC PEAK.
ERRORS SHOWN INCLUDE STATISTICAL ERRORS, QUASIELASTIC CONTRIBUTION SUBTRACTION ERROR, AND AN ASSYMETRIC ERROR RESULTING FROM THE UNCERTAINTIES AS TO THE ORIGIN OF THE WIDENING OF THE ELASTIC PEAK.
Results are presented from a study of inclusive neutral strange particle production by a 147 GeV/ c tagged π + /K + /p beam in the Fermilab 30-inch hydrogen bubble chamber. The experiment made use of the proportional hybrid spectrometer system. Results are based on 995 K S 0 , 485 Λ, and 83 Λ found in a sample of 132 000 pictures. Cross sections are given for inclusive production of these particles by each of the three beam particles, and comparisons are made with measurements at other energies. Topological cross sections are also calculated, and KNO multiplicity scaling is investigated. Distributions are presented of invariant cross sections as functions of the Feynman scaling variable x and c.m. rapidity y . The transverse momentum-squared distributions with their fitted slopes are also given. Comparisons are made of the production characteristics for the three beam types.
No description provided.
No description provided.
No description provided.
We present measurements of two-particle angular correlations in hadron jets produced in e + e − annihilation between 7.7 and 31.6 GeV c.m. energy. The data are compared to predictions of high order perturbative QCD calculations.
No description provided.
Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.
THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.
No description provided.
The charged-particle multiplicity distribution from 250-GeV/c π−p interactions in the Fermilab 15-ft bubble chamber is presented. The corrections to the raw data are described. Fits to these data along with other high-energy bubble-chamber data show that cluster models with two components—a low-multiplicity, diffractive component and a high-multiplicity, nondiffractive component—describe the data fairly well. The charged multiplicity of each cluster is found to be ∼2, while the number of clusters for each component grows linearly with ln(s). The multiplicity moments are consistent with other experiments. We find 〈nc〉=8.427±0.059, f2cc=8.66±0.11, 〈nc〉D=2.038±0.023. The total inelastic cross section is σI=21.42±0.50 mb.
No description provided.
The reaction π − p→K + K − n has been studied on a hydrogen target (27 000 events) at 18.4 GeV/ c and on a polarized target (54 000 events) at 17.2 GeV/ c . A combination of results of both experiments allows a partial-wave analysis of the K + K − system between 1.1 and 1.74 GeV mass without any model assumptions. In general our fits yield unique solutions. Using results of our previous analysis of π + π − final states and assuming the dominance of the positive G -parity states in the K + K − system, the branching ratios BR ( K K /ππ) of partial waves into K K and ππ are determined. The S-wave appears to be mainly a broad ε (1300) with BR ( K K /ππ) = 0.068 −0.021 +0.017 . The weak P-wave can be described by a tail of the ϱ(770) with BR ( K K /ππ) = 0.081 −0.025 +0.029 . The D-wave is interpreted in terms of a superposition of f(1270) + A 2 (1310) + f′(1515) resonances. The fit yields BR ( K K /ππ) = 0.069 −0.031 +0.023 for the f(1270) and BR( ππ /all) = 0.027 −0.013 +0.071 for the f′(1515). The F-wave shows the g(1690) meson with BR ( K K /ππ) = 0.191 −0.037 +0.040 . All the above values refer to the t bin between 0.01 and 0.20 (GeV/ c ) 2 . Some results are also given for the high- t region.
PARTIAL-WAVE INTENSITIES AND BRANCHING RATIOS.
The polarization parameter has been measured for K − p elastic scattering at nine incident beam momenta between 0.955 and 1.272 GeV/ c covering the c.m. angular range −0.9 < cos θ ∗ < + 0.9 . Experimental results and coefficients of Legendre polynomial fits to the data are presented and compared with other measurements and a partial-wave analysis.
No description provided.
LEGENDRE POLYNOMIAL COEFFICIENTS FOR POLARIZATION DERIVED USING INTERPOLATED DIFFERENTIAL CROSS SECTION DATA OF B. CONFORTO ET AL., NP B105, 189 (1976).
The charged multiplicity distribution is presented for K − p interactions produced in the hydrogen bubble chamber, BEBC, using an r.f. separated, tagged K − beam of 110 GeV/ c momentum. A comparison with K + p, πp and pp data at lower energies shows that the main features of the multiplicity distributions depend on energy and charge of the incident particles, but not on their strangeness. At high energies, only the energy is important.
No description provided.
No description provided.
No description provided.
Hadron production by e + e − annihilation has been studied for c.m. energies W between 13 and 31.6 GeV. As a function of 1n W the charged particle multiplicity grows faster at high energy than at lower energies. This is correlated with a rise in the plateau of the rapidity distribution. The cross section s d σ /d x is found to scale within ±30% for x > 0.2 and 5 ⩽ W ⩽ 31.6 GeV.
CHARGED PARTICLE MULTIPLICITIES.
RAPIDITY DISTRIBUTION.
RAPIDITY DISTRIBUTION.
Virtual photoproduction of J/ ψ mesons has been measured for 280 GeV muon iron interactions in an iron/scintillator calorimeter target. The J/ψ's were identified by their decay into muon pairs. 315 events were observed, about half of which were elastic. The t , Q 2 and v distributions of these elastic events are presented. The v dependence is measured between 40 and 180 Mev and compared with lower energy photoproduction results. The Q 2 dependence is compared with the predictions of the vector dominance model.
TPRIME DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL Q2 AND NU WITH 280 GEV MUON BEAM.
NORMALIZED Q**2 DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL NU AND T WITH 280 GEV MUON BEAM.
EXTRAPOLATION OF Q**2 AND T DEPENDENCE TO CALCULATE D(SIG)/DT AT Q**2=0 AND T=0 FOR ELASTIC J/PSI PHOTOPRODUCTION PER NUCLEON.