The transmission regeneration amplitude after a thick copper block has been measured. The quantity {∣ƒ(0)- overlineƒ(0)∣ }/{k} varies from 20.0 $\pm$ 1.4 mb at 2.75 GeV/c to 13.6 $\pm$ 1.2 mb at 7.25 GeV/c. Results are in agreement with optical model calculations in which real and imaginary parts of the amplitudes for single nucleon scattering are determined from forward dispersion relations and total cross-sections.
Regeneration amplitude.
Total neutron cross-sections were determined for He, Li, Be, C, Al, Fe, Cu and Pb at an average neutron momentum of 10 GeV/ c . The results agree very well with total proton-neuclei cross-sections at 20 GeV/ c . The interaction radii inferred from the cross-sections are in remarkable agreement with the half-density radii as obtained from electron scattering.
No description provided.
None
No description provided.
Total and differenial cross sections of the reaction γ +n→p+ π − have been determined for photon-energies between 0.2 and 2.0 GGeV. Below 500 MeV the differential cross sections are compared with theoretical predictions derived from fixed-momentum-transfer dispersion relations.
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Measurements on the production of intermediate momenta negative pions, negative kaons, and antiprotons by protons of 43 GeV, 52 GeV and 70 GeV on aluminium nuclei are reported.
No description provided.
No description provided.
No description provided.
Results are presented from an experiment in which high-energy deuterons, produced by proton-proton interactions at 21.1 GeV/ c incident momentum, were detected over a range of angles from 12.5 mrad to 60 mrad in the laboratory system. From the momentum spectra of the deuterons, the final states D + π + and D + ϱ + have been identified. The angular distribution for these reactions are presented and compared with previous data at lower energies.
The statistical errors are presented.
The statistical errors are presented.
The statistical errors are presented. The data are from previous publications.
The differential cross-section for the elastic neutron-proton-scattering has been measured for neutron energies between 4 and 16 GeV and | t | from 0.3 to 1.3 (GeV/ c ) 2 . The results can be fitted by exp( A + Bt ), where B increases slightly with energy indicating shrinkage. The values of B for n−p scattering are in good agreement with the corresponding data for p−p scattering.
'1'. '2'. '3'. '4'.
Single π + production on protons by linearly polarized photons of 2.5 to 5 GeV was measured at squared four momentum transfers t between −0.01 and −0.6 (GeV/ c ) 2 . The results show that the differential cross section d σ ⊥ d t with the electric vector of the photon perpendicular to the reaction plane is much larger than d σ ‖ d t with the electric vector parallel to the reaction plane. The predictions of Regge models and of the vector meson dominance model are briefly discussed.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
The reaction e + e − → ω o has been measured by detecting the charged pions of the π + π − π o decay mode of the ω o. A partial decay width of ω o in e + e − : Γ e + e − =0.94±0.18 keV is deduced from this result.
FITTED, BACKGROUND SUBTRACTED, PEAK OMEGA CROSS SECTION, CORRECTED FOR UNOBSERVED DECAYS, IS 1.82 +- 0.34 MUB. TABULATED ASSUMING CENTRAL ENERGY IS 782.6 MEV. VACUUM POLARIZATION AND RADIATIVE CORRECTIONS APPLIED.
The electromagnetic form factor of the pion has been determined in the ϱ o resonance region by measuring the absolute cross section of the reaction e + e − → π + π − with the Orsay storage ring. More than 800 pion pairs have been detected. The excitation curve has been fitted with a Breit-Wigner formula which leads to the following values: σ peak = (1.69 ± 0.21) 10 −30 cm 2 ; m ϱ = (770 ± 4) MeV ; Γ ϱ = (111 ± 6) MeV . The partial width of the ϱ o going into e + e − thus obtained is: Γ ϱ → e + e − =(7.36±0.7) keV .
No description provided.