Date

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

46 data tables

Measured differential four-jet cross section for R=0.4 jets, in bins of pT1, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All uncertainties are given in %. The first uncertainty quoted is due to the number of data events. DSYS:mcstat is the statistical uncertainty due to the number of MC simulation events. The other columns, denoted with DSYS, correspond to the experimental systematic uncertainties arising from JES, JER, unfolding and luminosity, respectively.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT2, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT3, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

More…

A Study of the Energy Dependence of the Underlying Event in Proton-Antiproton Collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 092009, 2015.
Inspire Record 1388868 DOI 10.17182/hepdata.70787

We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

24 data tables

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMAX region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMIN region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransAVE region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

More…

Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ as a function of transverse momentum and rapidity

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 750 (2015) 154-175, 2015.
Inspire Record 1359451 DOI 10.17182/hepdata.69285

Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

2 data tables

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.


Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in $pp$ collisions at $\sqrt{s}$ = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3117, 2014.
Inspire Record 1307243 DOI 10.17182/hepdata.66091

Additional jet activity in dijet events is measured using $pp$ collisions at ATLAS at a centre-of-mass energy of 7 TeV, for jets reconstructed using the anti-kt algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijets. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the mean transverse momentum of the dijets and of the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijets. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWHEG+PYTHIA 8 and HEJ+ARIADNE are found to provide the best agreement with the data.These measurements use the full data sample collected with the ATLAS detector in 7 TeV $pp$ collisions at the LHC and correspond to integrated luminosities of 36.1 pb$^-1$ and 4.5 fb$^-1$ for data collected during 2010 and 2011 respectively.

40 data tables

Gap fraction as a function of leading dijet rapidity separation.

Gap fraction as a function of leading dijet scalar mean pT in GeV.

Mean number of jets in rapidity interval as a function of leading dijet rapidity separation.

More…

Measurement of differential production cross-sections for a $Z$ boson in association with $b$-jets in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2014) 141, 2014.
Inspire Record 1306294 DOI 10.17182/hepdata.65389

Measurements of differential production cross-sections of a $Z$ boson in association with $b$-jets in $pp$ collisions at $\sqrt{s}=7$ TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a $Z$ boson decaying into an electron or muon pair, and containing $b$-jets. For events with at least one $b$-jet, the cross-section is presented as a function of the $Z$ boson transverse momentum and rapidity, together with the inclusive $b$-jet cross-section as a function of $b$-jet transverse momentum, rapidity and angular separations between the $b$-jet and the $Z$ boson. For events with at least two $b$-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum $b$-jets, and as a function of the $Z$ boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

28 data tables

Integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

Breakdown of systematic uncertainties (in %) for the integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

The inclusive $b$-jet cross-section $\sigma(Zb)\times N_{b\text{-jet}}$ as a function of $b$-jet $p_T$ together with the corresponding non-perturbative corrections.

More…

Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 3129, 2014.
Inspire Record 1298393 DOI 10.17182/hepdata.64241

A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at sqrt(s) = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range abs(eta) < 2.5, abs(eta) not in [1.44,1.57] and with an angular separation Delta R > 0.45, is 17.2 +/- 0.2 (stat.) +/- 1.9 (syst.) +/- 0.4 (lum.) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.

4 data tables

Values of D(SIG)/DM(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.

Values of D(SIG)/DPT(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.

Values of D(SIG)/DDELTA(PHI(GAMMA GAMMA)) (pb/rad) for the data. The error given on each value is the total uncertainty.

More…

Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at sqrt(s) = 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 04 (2014) 031, 2014.
Inspire Record 1279489 DOI 10.17182/hepdata.62729

Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 inverse femtobarns of proton-proton collision data collected at a centre-of-mass energy of sqrt(s)=8 TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5 sigma level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the SHERPA and POWHEG event generators.

23 data tables

Unfolded normalised differential Z+2j cross section as a function of dijet invariant mass in the baseline region.

Unfolded normalised differential Z+2j cross section as a function of dijet invariant mass in the search region.

Unfolded normalised differential Z+2j cross section as a function of the rapidity separation between the leading jets in the baseline region.

More…

Event shapes and azimuthal correlations in Z + jets events in pp collisions at sqrt(s) =7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 238-261, 2013.
Inspire Record 1209721 DOI 10.17182/hepdata.75374

Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.

18 data tables

Normalized DPhi(Z, j1) distributions for Njets >= 1.

Normalized DPhi(Z, j1) distributions for Njets >= 2.

Normalized DPhi(Z, j1) distributions for Njets >= 3.

More…

Measurement of angular correlations in Drell-Yan lepton pairs to probe Z/gamma* boson transverse momentum at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 720 (2013) 32-51, 2013.
Inspire Record 1204784 DOI 10.17182/hepdata.61421

A measurement of angular correlations in Drell-Yan lepton pairs via the phistar observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma*->e+e- and Z/gamma*->mu+mu- decays produced in proton--proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb-1. Normalised differential cross sections as a function of phistar are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phistar for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations. Some of the Monte Carlo event generators are also able to describe the data. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.

7 data tables

The measured PHI* distributions for the dielectron events corrected back to the born level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

The measured PHI* distributions for the dielectron events corrected back to the dress level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

The measured PHI* distributions for the dielectron events corrected back to the bare particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.

More…

Measurement of isolated-photon pair production in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 01 (2013) 086, 2013.
Inspire Record 1199269 DOI 10.17182/hepdata.62320

The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (|eta|<1.37 and 1.52<|eta|<2.37) and with an angular separation Delta R>0.4, is 44.0 (+3.2) (-4.2) pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins--Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.

4 data tables

Experimental cross-section values per bin in PB*GEV**-1 for M(2GAMMA).

Experimental cross-section values per bin in PB*GEV**-1 for PT(2GAMMA).

Experimental cross-section values per bin in PB*RAD**-1 for DELTA(PHI(2GAMMA)).

More…