A measurement of the substructure of bottom quark jets (b jets) in proton-proton (pp) collisions is presented. The measurement uses data collected in pp collisions at $\sqrt{s}$ = 5.02 TeV recorded by the CMS experiment in 2017, corresponding to an integrated luminosity of 301$^{-1}$. An algorithm to identify and cluster the charged decay daughters of b hadrons is developed for this analysis, which facilitates the exposure of the gluon radiation pattern of b jets using iterative Cambridge-Aachen declustering. The soft-drop-groomed jet radius, $R_\mathrm{g}$, and momentum balance, $z_\mathrm{g}$, of b quark jets are presented. These observables can be used to test perturbative quantum chromodynamics predictions that account for mass effects. Because the b hadron is partially reconstructed from its charged decay daughters, only charged particles are used for the jet substructure studies. In addition, a jet fragmentation function, $z_\text{b,ch}$, is measured, which is defined as the distribution of the ratio of the transverse momentum ($p_\mathrm{T}$) of the partially reconstructed b hadron with respect to the charged-particle component of the jet $p_\mathrm{T}$. The substructure variable distributions are unfolded to the charged-particle level. The b jet substructure is compared to the substructure of jets in an inclusive jet sample that is dominated by light-quark and gluon jets in order to assess the role of the b quark mass. A strong suppression of emissions at small $R_\mathrm{g}$ values is observed for b jets when compared to inclusive jets, consistent with the dead-cone effect. The measurement is also compared with theoretical predictions from Monte Carlo event generators. This is the first substructure measurement of b jets that clusters together the b hadron decay daughters.
First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.
A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
A set of measurements for the production of a $W$-boson in association with high-transverse-momentum jets is presented using 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC. The measurements are performed in final states in which the $W$-boson decays into an electron or muon plus a neutrino and is produced in association with jets with $p_{\text{T}}>30$ GeV, where the leading jet has $p_{\text{T}}>500$ GeV. The angular separation between the lepton and the closest jet with $p_{\text{T}}>100$ GeV is measured and used to define a collinear phase space, wherein measurements of kinematic properties of the $W$-boson and the associated jet are performed. The collinear phase space is populated by dijet events radiating a $W$-boson and events with a $W$-boson produced in association with several jets and it serves as an excellent data sample to probe higher-order theoretical predictions. Measured differential distributions are compared with predictions from state-of-the-art next-to-leading order multi-leg merged Monte Carlo event generators and a fixed-order calculation of the $W$+1-jet process computed at next-to-next-to-leading order in the strong coupling constant.
A search for heavy neutral leptons (HNLs), the right-handed Dirac or Majorana neutrinos, is performed in final states with three charged leptons (electrons or muons) using proton-proton collision data collected by the CMS experiment at $\sqrt{s} =$ 13 TeV at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. The HNLs could be produced through mixing with standard model neutrinos $\nu$. For small values of the HNL mass ($\lt$ 20 GeV) and the square of the HNL-$\nu$ mixing parameter (10$^{-7}$-10$^{-2}$), the decay length of these particles can be large enough so that the secondary vertex of the HNL decay can be resolved with the CMS silicon tracker. The selected final state consists of one lepton emerging from the primary proton-proton collision vertex, and two leptons forming a displaced, secondary vertex. No significant deviations from the standard model expectations are observed, and constraints are obtained on the HNL mass and coupling strength parameters, excluding previously unexplored regions of parameter space in the mass range 1-20 GeV and squared mixing parameter values as low as 10$^{-7}$.
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 fb$^{-1}$. Jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm for distance parameters of $R$ = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity $\lvert y_\text{max}\rvert$ of the two jets with the highest transverse momenta $p_\mathrm{T}$ and their invariant mass $m_{1,2}$, and triple-differentially (3D) as a function of the rapidity separation $y^*$, the total boost $y_\mathrm{b}$, and either $m_{1,2}$ or the average $p_\mathrm{T}$ of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the Z boson is investigated, yielding a value of $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1179 $\pm$ 0.0019.
In the standard model of particle physics, the masses of the carriers of the weak interaction, the W and Z bosons, are uniquely related. Physics beyond the standard model could change this relationship through the effects of quantum loops of virtual particles, thus making it of great importance to measure these masses with the highest possible precision. Although the mass of the Z boson is known to the remarkable precision of 22 parts per million (2.0 MeV), the W boson mass is known much less precisely, given the difficulty of the measurement. A global fit to electroweak data, used to predict the W boson mass in the standard model, yields an uncertainty of 6 MeV. Reaching a comparable experimental precision would be a sensitive and fundamental test of the standard model. Furthermore, a precision measurement of the W boson mass performed by the CDF Collaboration at the Fermilab Tevatron has challenged the standard model by significantly disagreeing with the prediction of the global electroweak fit and the average of other $m_\mathrm{W}$ measurements. We report the first W boson mass measurement by the CMS Collaboration at the CERN LHC, based on a data sample collected in 2016 at the proton-proton collision energy of 13 TeV. The W boson mass is measured using a large sample of W$\to\mu\nu$ events via a highly granular binned maximum likelihood fit to the kinematic properties of the muons produced in the W$^{+}$ and W$^{-}$ boson decays. The significant in situ constraints of theoretical inputs and their corresponding uncertainties, together with an accurate determination of the experimental effects, lead to a precise W boson mass measurement, $m_\mathrm{W} =$ 80$\,$360.2 $\pm$ 9.9 MeV, in agreement with the standard model prediction.
A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC, and correspond to an integrated luminosity of 36.7-126.9 fb$^{-1}$ depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125-1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.
The first search for a heavy neutral spin-1 gauge boson (Z') with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at $\sqrt{s}$ = 13 TeV, collected from 2016 to 2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the Z' boson and its branching fraction to $ττ$ or WW. The presence of a Z' boson decaying to $τ^+τ^-$ (W$^+$W$^-$) is excluded for masses up to 2.45 (1.60) TeV, depending on the Z' boson coupling to SM weak bosons, and assuming a Z' $\to$$τ^+τ^-$ (W$^+$W$^-$) branching fraction of 50%.
A search for a pair of light pseudoscalar bosons (a$_1$) produced in the decay of the 125 GeV Higgs boson is presented. The analysis examines decay modes where one a$_1$ decays into a pair of tau leptons and the other decays into either another pair of tau leptons or a pair of muons. The a$_1$ boson mass probed in this study ranges from 4 to 15 GeV. The data sample was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model (SM) expectations is observed. The study combines the 4$τ$ and 2$μ$2$τ$ channels to set upper limits at 95% confidence level (CL) on the product of the Higgs boson production cross section and the branching fraction to the 4$τ$ final state, relative to the Higgs boson production cross section predicted by the SM. In this interpretation, the a$_1$ boson is assumed to have Yukawa-like couplings to fermions, with coupling strengths proportional to the respective fermion masses. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. The results are also interpreted in the context of models with two Higgs doublets and an additional complex singlet field (2HD+S). The tightest constraints are obtained for the Type III 2HD+S model. In this case, assuming the Higgs boson production cross section equals the SM prediction, values of the branching ratio for the Higgs boson decay into a pair of a$_1$ bosons exceeding 16% are excluded at 95% CL for a$_1$ boson masses between 5 and 15 GeV and $\tanβ$ $\gt$ 2, with the exception of scenarios in which the a$_1$ boson mixes with charm or bottom quark-antiquark bound states.