Date

Collaboration

Measurement of D$^0$, D$^+$, D$^{*+}$ and D$^+_{\rm s}$ production in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}}= 5.02$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 10 (2018) 174, 2018.
Inspire Record 1669819 DOI 10.17182/hepdata.88168

We report measurements of the production of prompt D$^0$, D$^+$, D$^{*+}$ and D$^+_{\rm s}$ mesons in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV, in the centrality classes 0-10%, 30-50% and 60-80%. The D-meson production yields are measured at mid-rapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm T}$). The $p_{\rm T}$ intervals covered in central collisions are: $1 8$ GeV/$c$, while it is larger at lower $p_{\rm T}$. The nuclear modification factors for strange and non-strange D mesons are also compared to theoretical models with different implementations of in-medium energy loss.

43 data tables

pT-differential yield of prompt D0 mesons in Pb-Pb collisions at sqrt{sNN}=5.02 TeV in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0393.

pT-differential yield of prompt D+ mesons in Pb-Pb collisions at sqrt{sNN}=5.02 TeV in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of D+->Kpipi : 0.0946.

pT-differential yield of prompt D*+ mesons in Pb-Pb collisions at sqrt{sNN}=5.02 TeV in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of D*+->D0pi->Kpipi : 0.0393*0.677.

More…

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Nature Phys. 13 (2017) 535-539, 2017.
Inspire Record 1471838 DOI 10.17182/hepdata.77284

At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the Quark-Gluon Plasma (QGP) [1]. Such an extreme state of strongly-interacting QCD (Quantum Chromo-Dynamics) matter is produced in the laboratory with high-energy collisions of heavy nuclei, where an enhanced production of strange hadrons is observed [2-6]. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions [7], is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions [8,9]. Yet, enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity pp collisions. We find that the integrated yields of strange and multi-strange particles relative to pions increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with p-Pb collision results [10,11] indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.

52 data tables

$K^{0}_{S}$ transverse momentum spectrum: V0M Class I (pp at $\sqrt{s}=7$ TeV).

$K^{0}_{S}$ transverse momentum spectrum: V0M Class II (pp at $\sqrt{s}=7$ TeV).

$K^{0}_{S}$ transverse momentum spectrum: V0M Class III (pp at $\sqrt{s}=7$ TeV).

More…

Transverse momentum dependence of D-meson production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 03 (2016) 081, 2016.
Inspire Record 1394580 DOI 10.17182/hepdata.72510

The production of prompt charmed mesons D$^0$, D$^+$ and D$^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, $\sqrt{s_{\rm NN}}$, of 2.76 TeV. The production yields for rapidity $|y|<0.5$ are presented as a function of transverse momentum, $p_{\rm T}$, in the interval 1-36 GeV/$c$ for the centrality class 0-10% and in the interval 1-16 GeV/$c$ for the centrality class 30-50%. The nuclear modification factor $R_{\rm AA}$ was computed using a proton-proton reference at $\sqrt{s} = 2.76$ TeV, based on measurements at $\sqrt{s} = 7$ TeV and on theoretical calculations. A maximum suppression by a factor of 5-6 with respect to binary-scaled pp yields is observed for the most central collisions at $p_{\rm T}$ of about 10 GeV/$c$. A suppression by a factor of about 2-3 persists at the highest $p_{\rm T}$ covered by the measurements. At low $p_{\rm T}$ (1-3 GeV/$c$), the $R_{\rm AA}$ has large uncertainties that span the range 0.35 (factor of about 3 suppression) to 1 (no suppression). In all $p_{\rm T}$ intervals, the $R_{\rm AA}$ is larger in the 30-50% centrality class compared to central collisions. The D-meson $R_{\rm AA}$ is also compared with that of charged pions and, at large $p_{\rm T}$, charged hadrons, and with model calculations.

17 data tables

$p_{\rm T}$-differential yield of prompt ${\rm D}^{0}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of ${\rm D}^{0}$->${\rm K}^{0}\pi^{+}$ : 0.0388. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$p_{\rm T}$-differential yield of prompt ${\rm D}^{+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of ${\rm D}^{+}$->${\rm K}^{-}\pi^{+}\pi^{+}$ : 0.0913. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$p_{\rm T}$-differential yield of prompt ${\rm D}^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of ${\rm D}^{*+}$->${\rm D}^{0}\pi^{+}$->${\rm K}^{-}\pi^{+}\pi^{+}$ : 0.0388*0.677. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

More…