An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12
No description provided.
No description provided.
No description provided.
Exposures of the Ne/H 2 filled Big European Bubble Chamber (BEBC) to a dichromatic neutrino (antineutrino) beam produced by 400 GeV protons of the CERN SPS yielded ∼ 3100 events with a negative, and ∼ 1100 with a positive, muon. The neutrino flux is determined from the muon flux in the shielding. Assuming a linear energy dependence of the cross section, the values σ E between 20 and 200 GeV are found to be 0.657 ± 0.012 (stat.) ± 0.027 (syst.) and 0.309 ± 0.009 (stat.) ± 0.013 (syst.) cm 2 (GeV nucleon) −1 , for neutrinos and antineutrinos, respectively. The scaling variable q 2 E decreases significantly with increasing energy both for neutrinos and antineutrinos.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.
Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.
No description provided.
The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.
TOTAL ACCEPTANCE CORRECTED CROSS SECTION.
ACCEPTANCE CORRECTED.
MOST IMPORTANT CONTRIBUTING STATES CORRECTED FOR ACCEPTANCE.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
We measured the total cross section for p p scattering at √ s = 53 GeV at the CERN ISR. The method was based on the measurement of the total interaction rate and of the ISR luminosity. The result obtained, σ tot = 44.1 ± 2.0 mb, suggests that σ tot ( p p) starts increasing at ISR energies. A measurement of the p p differential cross section was also performed: the results show a change in the slope at | t | ≈ 0.1 GeV 2 , similar to that observed in pp scattering.
No description provided.
No description provided.
By using (pp) interactions at three different c.m. energies,\(\left( {\sqrt 8 } \right)_{pp} \)=30, 44, 62 GeV, it is shown that the average charged-particle multiplicity
WITH SQRT(S) OF 30 GEV.
WITH SQRT(S) OF 44 GEV.
WITH SQRT(S) OF 62 GEV.
We present results on the jet structure observed in multihadronic events produced by e+e− annihilation in the Mark I magnetic detector at SPEAR. The evidence for jet structure and the jet-axis angular distribution are reported. We give inclusive distributions of the hadrons in Feynman x, rapidity, and transverse momentum relative to the jet axis.
Observed particle PT with respect to jet axis for events with three or more detected charged particles.
No description provided.
No description provided.
The jet character of the hadronic final states produced ine+e− annihilations is studied in terms of jet measures such as thrust, sphericity, jet opening angle and jet masses, in the energy range 7.7 to 31.6 GeV. All distributions and averages have been corrected for detector effects and initial state radiation. The energy dependence of the averages of these jet quantities is used to estimate the contributions due to perturbative QCD and fragmentation effects. Correlations between the jet measures and the multiplicity of charged hadrons are also presented.
DIFFERENTIAL THRUST DISTRIBUTIONS WHERE THRUST IS MAX(SUM(ABS(PLONG))/SUM(ABS(P))).
MEAN THRUST VALUES AS A FUNCTION OF CM ENERGY.
DIFFERENTIAL SPERICITY DISTRIBUTIONS WHERE SPHERICITY IS 3/2*MIN(SUM(PT**2)/SUM(ABS(P))).
Energy correlations have been measured with the MARK II detector at the PEP storage ring (Stanford Linear Accelerator Center) at c.m. energy of 29 GeV and are compared to first-order QCD predictions. Fragmentation processes are significant and limit the precision with which the first-order strong-coupling constant can be determined.
CORRELATION IS THE ENERGY WEIGHTED CROSS SECTION FOR OBSERVING THE ENERGY E1 IN THE SOLID ANGLE DOMEGA1 AND THE ANGLE E2 IN THE SOLID ANGLE DOMEGA2.SUMMED OVER ALL PAIRS OF PARTICLES IN DOMEGA1 AND DOMEGA2 AND ALL EVENTS.
MEASUREMENT OF THE STRONG COUPLING CONSTANT.