We present experimental evidence for a resonant behaviour of the hadron production from e + e − annihilations at the e + e − storage ring ADONE. A Breit-Wigner fit to the enhancement present between 1800 and 1850 MeV gives the following parameters M = 1812 −13 +7 MeV, Γ = 34 −15 +21 MeV.
MULTIHADRON EVENTS (AT LEAST THREE CHARGED TRACKS) PER UNIT LUMINOSITY.
The total cross section for electron-positron annihilation into three or more hadrons has been measured for centre of mass energies between 1.4 and 2.0 GeV. The data were obtained at ADONE by the BB̄ experiment.
NOTE THAT THIS MEASUREMENT OF R EXCLUDES TWO-BODY FINAL STATE EVENTS. RADIATIVE CORRECTIONS WERE APPLIED.
We present results from a direct photon pair search performed with the NA3 spectrometer, using incident positive and negative beams at 200 GeV/ c interacting with a carbon target. The experiment is sensitive to photons with p T >1.8 GeV / c and −0.4⩽y ∗ ⩽1.0 , one in each arm of the apparatus. A 3 standard deviation signal is seen in τ − and p interactions. The cross section is higher than the second order QCD calculations, but systematic errors are large.
No description provided.
We have measured the inclusive cross-section for π0 production at large transverse momentum by 200 GeV/c positive and negative hadron beams on Carbon targets (2.9
CONVERSION TRIGGER SELECTION.
CALORIMETER TRIGGER SELECTION.
The ϒ, ϒ′, and ϒ′′ states have been observed at the Cornell Electron Storage Ring as narrow peaks in σ(e+e−→hadrons) versus beam energy. Data were collected during a run with integrated luminosity of 1000 nb−1, using the Columbia University-Stony Brook segmented NaI detector. The measured mass differences are M(ϒ′)−M(ϒ)=559±1(±3) MeV and M(ϒ′′)−M(ϒ)=889±1(±5) MeV, where the errors in parentheses represent systematic uncertainties. Preliminary values for the leptonic width ratios were also obtained.
HADRONIC EVENTS/SMALL-ANGLE BHABHA YIELD.
During an energy scan at the Cornell Electron Storage Ring, with use of the Columbia University-Stony Brook NaI detector, an enhancement in σ(e+e−→hadrons) is observed at center-of-mass energy ∼10.55 GeV. The mass and leptonic width of this state (ϒ′′′) suggest that it is the 4S13 bound state of the b quark and its antiquark. After applying to the data a cut in a (pseudo) thrust variable, the natural width is measured to be Γ=12.6±6.0 MeV, indicating that the ϒ′′′ is above the threshold for BB¯ production.
VISIBLE TOTAL HADRONIC CROSS SECTION FOR FIRST, THIRD AND FOURTH UPSILONS.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.