Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.
No description provided.
No description provided.
No description provided.
We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.
No description provided.
No description provided.
None
No description provided.
Compton-scattering cross sections from hydrogen (γp→γp) and from deuterium have been measured at four-momentum transfer t in the range 0.014<~−t<~0.17 GeV2 and photon energies of 8 and 16 GeV. Fits to our proton data of the form dσdt=AeBt give B≈7.8 GeV−2 and an intercept A which is in agreement with the optical point. Both coherent scattering from deuterons and incoherent scattering from neutrons and protons are seen from deuterium. A small difference between the neutron and proton cross sections is seen, indicating the presence of about a 3% isovector t-channel exchange amplitude in addition to the predominant isoscalar amplitude. The vector-dominance model predicts lower cross sections (by at least 20%) for both the hydrogen and deuterium cases.
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.
No description provided.
FULL T REGION.
FULL T REGION.
Differential cross sections for electrons scattered inelastically from hydrogen have been measured at 18°, 26°, and 34°. The range of incident energy was 4.5 to 18 GeV, and the range of four-momentum transfer squared was 1.5 to 21 (GeVc)2. With the use of these data in conjunction with previously measured data at 6° and 10°, the contributions from the longitudinal and transverse components of the exchanged photon have been separately determined. The values of the ratio of the photoabsorption cross sections σSσT are found to lie in the range 0 to 0.5. The question of scaling of 2MpW1 and νW2 as a function of ω is discussed, and scaling is verified for a large kinematic range. Also, a new scaling variable which reduces to ω in the Bjorken limit is introduced which extends the scaling region. The behavior of σT and σS is also discussed as a function of ν and q2. Various weighted sum rules of νW2 are evaluated.
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
The reaction π−+p→π−+p has been studied in the 15-in. bubble chamber at the Princeton-Pennsylvania Accelerator. The elastic scattering cross section was determined to be 8.5 ± 0.2 mb. The forward peak fits to an exponential in t with a slope of 8.1 ± 0.2 (GeV/c)−2. The forward differential cross section dσdΩ(0)=17.9±0.7 mb/sr. A fit of the center-of-mass angular distribution to Legendre polynomials needed terms up to the 12th order, corresponding to the highest nonzero partial wave of L=6.
No description provided.
FORWARD D(SIG)/DOMEGA IS 17.9 +- 0.7 MB/SR. SLOPE IS 8.1 +- 0.2 GEV**-2 (-T = 0.1 TO 0.4 GEV**2).
OTHER 2.27 GEV/C DATA ALSO QUOTED.
Reactions p p → p p and p p → n n were studied at the kinetic energy 230 MeV of incident p by using bubble chamber films. Total cross sections for both of the reactions were found to be 51.2 ± 1.6 mb and 9.1 ± 0.6 mb, respectively. Differential cross sections are well explained by the phenomenological theory given by Bryan and Phillips.
No description provided.
No description provided.
No description provided.
Differential cross sections and density matrix elements are presented for K ∗− (890) and K ∗− (1400) produced in the reaction K − p→K O π − p at 3.95 GeV/ c . The cross sections are decomposed into contributions due to different exchange mechanisms.
No description provided.
No description provided.
No description provided.