Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Conrad, J.M. ; et al.
Phys.Rev.D 103 (2021) 052002, 2021.
Inspire Record 1804293 DOI 10.17182/hepdata.114365

The MiniBooNE experiment at Fermilab reports a total excess of $638.0 \pm 132.8$ electron-like events ($4.8 \sigma$) from a data sample corresponding to $18.75 \times 10^{20}$ protons-on-target in neutrino mode, which is a 46\% increase in the data sample with respect to previously published results, and $11.27 \times 10^{20}$ protons-on-target in antineutrino mode. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots in visible energy and cosine of the angle of the outgoing lepton, which can provide valuable input to models for the event excess. Second, we test whether the excess may arise from photons that enter the detector from external events or photons exiting the detector from $\pi^0$ decays in two model independent ways. Beam timing information shows that almost all of the excess is in time with neutrinos that interact in the detector. The radius distribution shows that the excess is distributed throughout the volume, while tighter cuts on the fiducal volume increase the significance of the excess. We conclude that models of the event excess based on entering and exiting photons are disfavored.

15 data tables

The frequentist $1\sigma$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.

The frequentist $90\%$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.

The frequentist $99\%$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.

More…

Measurements of hadron production in $\pi^{+}$ + C and $\pi^{+}$ + Be interactions at 60 GeV/$c$

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Phys.Rev.D 100 (2019) 112004, 2019.
Inspire Record 1754136 DOI 10.17182/hepdata.91220

Precise knowledge of hadron production rates in the generation of neutrino beams is necessary for accelerator-based neutrino experiments to achieve their physics goals. NA61/SHINE, a large-acceptance hadron spectrometer, has recorded hadron+nucleus interactions relevant to ongoing and future long-baseline neutrino experiments at Fermi National Accelerator Laboratory. This paper presents three analyses of interactions of 60 GeV/$c$ $\pi^+$ with thin, fixed carbon and beryllium targets. Integrated production and inelastic cross sections were measured for both of these reactions. In an analysis of strange, neutral hadron production, differential production multiplicities of $K^0_{S}$, $\Lambda$ and anti-$\Lambda$ were measured. Lastly, in an analysis of charged hadron production, differential production multiplicities of $\pi^+$, $\pi^-$, $K^+$, $K^-$ and protons were measured. These measurements will enable long-baseline neutrino experiments to better constrain predictions of their neutrino flux in order to achieve better precision on their neutrino cross section and oscillation measurements.

16 data tables

Doubly differential multiplicity measurements of produced pi+ from 60 GeV/c pi+ + C interactions. Statistical and systematic uncertainties are shown. Additionally, a normalization uncertainty of [-1.1%,+1.9%] applies to all of the measurements for this reaction.

Doubly differential multiplicity measurements of produced pi- from 60 GeV/c pi+ + C interactions. Statistical and systematic uncertainties are shown. Additionally, a normalization uncertainty of [-1.1%,+1.9%] applies to all of the measurements for this reaction.

Doubly differential multiplicity measurements of produced K+ from 60 GeV/c pi+ + C interactions. Statistical and systematic uncertainties are shown. Additionally, a normalization uncertainty of [-1.1%,+1.9%] applies to all of the measurements for this reaction.

More…

Measurements of production and inelastic cross sections for $\mbox{p}+\mbox{C}$, $\mbox{p}+\mbox{Be}$, and $\mbox{p}+\mbox{Al}$ at 60 GeV/$c$ and $\mbox{p}+\mbox{C}$ and $\mbox{p}+\mbox{Be}$ at 120 GeV/$c$

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Phys.Rev.D 100 (2019) 112001, 2019.
Inspire Record 1753094 DOI 10.17182/hepdata.95181

This paper presents measurements of production cross sections and inelastic cross sections for the following reactions: 60 GeV/$c$ protons with C, Be, Al targets and 120 GeV/$c$ protons with C and Be targets. The analysis was performed using the NA61/SHINE spectrometer at the CERN SPS. First measurements were obtained using protons at 120 GeV/$c$, while the results for protons at 60 GeV/$c$ were compared with previously published measurements. These interaction cross section measurements are critical inputs for neutrino flux prediction in current and future accelerator-based long-baseline neutrino experiments.

2 data tables

Results of production cross section measurements on proton beams. Measured channeles are p+C/Be/Al at 60 GeV and p+C/Be at 120 GeV.

Results of inelastic cross section measurements on proton beams. Measured channeles are p+C/Be/Al at 60 GeV and p+C/Be at 120 GeV.


Measurements of $\pi^{\pm}$, $K^{\pm}$ and proton yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Andronov, E.V. ; et al.
Eur.Phys.J.C 79 (2019) 100, 2019.
Inspire Record 1687433 DOI 10.17182/hepdata.88360

Measurements of the $\pi^{\pm}$, $K^{\pm}$, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS using data collected during 2010 run. The double differential $\pi^{\pm}$ yields were measured with increased precision compared to the previously published NA61/SHINE results, while the $K^{\pm}$ and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.

272 data tables

Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.

Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.

Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.

More…

Measurements of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 77 (2017) 671, 2017.
Inspire Record 1598505 DOI 10.17182/hepdata.79533

Measurements of inclusive spectra and mean multiplicities of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter.

116 data tables

Transverse momentum-rapidity spectrum of K− produced in inelastic p+p interactions at 31 GeV/c with statistical uncertainties.

Transverse momentum-rapidity spectrum of K− produced in inelastic p+p interactions at 20 GeV/c with systematic uncertainties.

Transverse momentum-rapidity spectrum of K+ produced in inelastic p+p interactions at 20 GeV/c with statistical uncertainties.

More…

Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p+p interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 77 (2017) 59, 2017.
Inspire Record 1489238 DOI 10.17182/hepdata.76899

Results on two-particle $\Delta\eta\Delta\phi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.

20 data tables

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 20 GeV/c.

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 31 GeV/c.

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 40 GeV/c.

More…

Production of $\Lambda$ hyperons in inelastic p+p interactions at 158 GeV/$c$

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 76 (2016) 198, 2016.
Inspire Record 1397634 DOI 10.17182/hepdata.76910

Inclusive production of $\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~\GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120\,\pm0.006\;(stat.)\,\pm 0.010\;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.

6 data tables

Double-differential yield $\frac{d^2n}{dydp_{_T}}$.

Double-differential yield $\frac{d^2n}{dydm_{_T}}$.

Double-differential yields, $\frac{d^{2}n}{x_{_F}p_{_T}}$ and $f_n(x_{_F},p_{T})$, for $x_{_F}<0$.

More…

Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Measurement of the production cross-sections of $\pi^\pm$ in p-C and $\pi^\pm$-C interactions at 12 GeV/c

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Astropart.Phys. 29 (2008) 257-281, 2008.
Inspire Record 778842 DOI 10.17182/hepdata.50415

The results of the measurements of the double-differential production cross-sections of pions in p-C and $\pi^\pm$-C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p-C interactions the analysis is performed using 100035 reconstructed secondary tracks, while the corresponding numbers of tracks for $\pi^-$-C and $\pi^+$-C analyses are 106534 and 10122 respectively. Cross-section results are presented in the kinematic range 0.5 GeV/c $\leq p_{\pi} &lt;$ 8 GeV/c and 30 mrad $\leq \theta_{\pi} &lt;$ 240 mrad in the laboratory frame. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range.

19 data tables

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 30 to 60 mrad.

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 60 to 90 mrad.

Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 90 to 120 mrad.

More…