Inclusive Λ production has been studied in K − p interactions at 8.25 GeV/ c using about 69 000 events; the total cross section is found to be 3.35 ± 0.20 mb. A comparison has been made with Σ 0 and Σ(1385) inclusive production. Their influence on the inclusive Λ production is discussed. The inclusive Λ cross section and polarization is interpreted in terms of the triple-Regge model. In the target fragmentation region an effective Regge trajectory is determined which lies closer to the K than to the K ∗ . In the beam fragmentation region the cross-section data indicate an effective Regge trajectory which corresponds to the nucleon, while the polarization data require additional Regge exchanges to be present.
No description provided.
No description provided.
No description provided.
Backward production of ω (1670) is observed in the reactions K − p→ φ + φ − ω 0 Λ 0 and K − p→ φ + φ − φ 0 φ 0 for | U ' Λ |<1.0 GeV 2 . The cross section for the ω (1670) → φ + φ − ω 0 decay mode is 1.90±0.35 μ b for 8.25 GeV/ c incident K − . Evidence is presented for the importance of the sequential decay, ω (1670) → B φ → ωφφ with a branching ratio ω (1670) → B φ /all ω (1670) → ωφφ =1.0± 0.25 0.00 .
No description provided.
We observe production of a Ξ * (2370) in the reactions K − p→ [YK¯π] K, [YK¯π] Kπ and [ΩK] (K or Kπ) at 8.25 GeV/ c in a high statistics bubble chamber experiment. The mass and width are determined to be 2373 ± 8 MeV and 80 ± 25 MeV, respectively. The I = 1/2 assignment is strongly favoured.
CROSS SECTIONS FOR PRODUCTION OF XI(2370) --> (LAMBDA + SIGMA) AK PI. BREIT-WIGNER FIT WITH POLYNOMIAL BACKGROUND. XI(2370) PRODUCED BY BARYON EXCHANGE. CORRECTED FOR NEUTRAL DECAYS AND GEOMETRICAL LOSSES. <OMEGA-KAON> DECAY SEEN. OBSERVED RATIO OF CHARGED TO NEUTRAL XI(2370) PRODUCTION IS 2.7 +- 0.9.
We present evidence for a narrow Y ∗ with a mass of 3.17 GeV and a width ⩽ 20 MeV decaying to ΣKK̄ + pions, ΛKK̄ + pions and ΞK + pions. The data come from two high statistics K − p bubble chamber experiments with a sensitivity of ≈100 eV/ μb at 8.25 GeV/ c and ≈ 45 eV/ μb at 6.5 GeV/ c .
OBSERVATION OF R(3170) ONLY DECAYING INTO 5 OR 6 PARTICLES (CROSS SECTION NOT CORRECTED FOR DECAYS WITH MORE THAN ONE UNSEEN FINAL STATE PARTICLE).
None
No description provided.
DOMINANT NATURAL PARITY EXCHANGE.
EVIDENCE FOR FORWARD DIP FOR -TP < 0.1 GEV**2.
None
No description provided.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.