Global polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons in Au+Au collisions at $\sqrt{s_{\rm NN}}=19.6$ and $27$ GeV

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 108 (2023) 014910, 2023.
Inspire Record 2659670 DOI 10.17182/hepdata.140936

In relativistic heavy-ion collisions, a global spin polarization, $P_\mathrm{H}$, of $\Lambda$ and $\bar{\Lambda}$ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing $P_\mathrm{H}$ with decreasing $\sqrt{s_{NN}}$. A splitting between $\Lambda$ and $\bar{\Lambda}$ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of $\sqrt{s_{NN}}=19.6$ and $27$ GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of $P_{\bar{\Lambda}}-P_{\Lambda}<0.24$% and $P_{\bar{\Lambda}}-P_{\Lambda}<0.35$%, respectively, at a 95% confidence level. We derive an upper limit on the na\"ive extraction of the late-stage magnetic field of $B<9.4\cdot10^{12}$ T and $B<1.4\cdot10^{13}$ T at $\sqrt{s_{NN}}=19.6$ and $27$ GeV, respectively, although more thorough derivations are needed. Differential measurements of $P_\mathrm{H}$ were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of $|y|<1$ and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.

5 data tables match query

The first-order event-plane resolution determined by the STAR EPD as a function of collision centrality is roughly doubled in comparison to previous analyses using the STAR BBC. We see $R_{\rm EP}^{(1)}$ peak for mid-central collisions.

The mid-central $P_{\rm H}$ measurements reported in this work are shown alongside previous measurements in the upper panel, and are consistent with previous measurements at the energies studied here. The difference between integrated $P_{\bar{\Lambda}}$ and $P_{\Lambda}$ is shown at $\sqrt{s_{\rm{NN}}}$=19.6 and 27 GeV alongside previous measurements in the lower panel. The splittings observed with these high-statistics data sets are consistent with zero. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. The previous $P_{\bar{\Lambda}}-P_{\Lambda}$ result at $\sqrt{s_{\rm NN}}=7.7$ GeV is outside the axis range, but is consistent with zero within $2\sigma$.

$P_{\rm H}$ measurements are shown as a function of collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. $P_{\rm H}$ increases with collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV, as expected from an angular-momentum-driven phenomenon.

More…

Test of spin dependence in charm-quark fragmentation to D*.

The TPC/Two-Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 43 (1991) 29-33, 1991.
Inspire Record 316132 DOI 10.17182/hepdata.22830

We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.

2 data tables match query

Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).

Spin density matrices for D* --> D0 pi+.


EXPERIMENTAL STUDIES OF THE SIGMA, T, P POLARIZATION PARAMETERS AND THE GAMMA P ---> P PI0 REACTION MULTIPOLE ANALYSIS IN THE FIRST RESONANCE REGION

Belyaev, A.a. ; Getman, V.a. ; Gorbenko, V.g. ; et al.
Nucl.Phys.B 213 (1983) 201-222, 1983.
Inspire Record 192457 DOI 10.17182/hepdata.34021

A description is given of the experimental techniques and investigation results of the parameters Σ , T , P for the γ p→p π 0 reaction using linear polarized photons and a polarized proton target. The measurements have been made in the photon energy range 280–450 MeV at pion c.m. angles between 60° and 135°. The new experimental data are used in an energy-independent channel multipole analysis without the Watson theorem.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

POLARIZATION OF RECOIL PROTONS FROM THE REACTION GAMMA P ---> PI0 P IN THE PHOTON ENERGY RANGE 450-MEV - 800-MEV

Bratashevsky, A.S. ; Gorbenko, V.G. ; Derebchinsky, A.I. ; et al.
Nucl.Phys.B 166 (1980) 525-533, 1980.
Inspire Record 157933 DOI 10.17182/hepdata.34552

Measurement of secondary-proton polarization from the reaction γ p → π 0 p have been performed in the proton energy range 500–800 MeV at c.m. pion emission angles 100°, 120°, 140°. The experiment was carried out using an optical spark chamber telescope at the output of the magnetic spectrometer. The obtained experimental data are included in a Walker-type analysis in order to verify the parameters of the resonances P 11 (1470), D 13 (1570) and S 11 (1535). Proton polarization in the reaction γ p → π 0 p was measured for a photon energy of 450 MeV at a c.m. pion emission angle of 105° using photons linearly polarized at 45° to the reaction plane. A liquid hydrogen target in the field of a superconducting magnet was used for the separation of the P x ′ and P z ′ components of the secondary-proton polarization vector.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

6 data tables match query

The measured invariant-mass distributions of two classes of $\Lambda$-hyperon decays. The decay classes are defined using the scalar triple product $\left(\vec{p}_\Lambda\times\vec{p}_p^*\right)\cdot \vec{B}_{\rm STAR}$, which is positive for right decays and negative for left decays. The right decay class has a notably sharper invariant-mass distribution than the left decay class, and this is due to the effects of daughter tracks crossing in the STAR TPC with the STAR magnetic field anti-parallel to the lab frame's z direction. The opposite pattern is obtained by flipping the sign of the STAR magnetic field or by reconstructing $\bar{\Lambda}$ hyperons.

The signal polarizations extracted according to the restricted invariant-mass method as a function of $\phi_\Lambda - \phi_p^*$, for positive-rapidity $\Lambda$ hyperons. The sinusoidal behavior is driven by non-zero net $v_1$. The vertical shift corresponds to the vorticity-driven polarization; in collider mode, where the net $v_1$ is zero, this dependence on $\phi_\Lambda - \phi_p^*$ does not exist.

The integrated Global $\Lambda$-hyperon Polarization in mid-central collisions at $\sqrt{s_{\rm NN}}=3$ GeV. The trend of increasing $\overline{P}_{\rm H}$ with decreasing $\sqrt{s_{\rm NN}}$ is maintained at this low collision energy. Previous experimental results are scaled by the updated $\Lambda$-hyperon decay parameter $\alpha_\Lambda=0.732$ for comparison with this result. Recent model calculations extended to low collision energy show disagreement between our data and AMPT and rough agreement with the 3-Fluid Dynamics (3FD) model. Previous measurements shown alongside our data can be found at: https://www.hepdata.net/record/ins750410?version=2; https://www.hepdata.net/record/ins1510474?version=1; https://www.hepdata.net/record/ins1672785?version=2; https://www.hepdata.net/record/ins1752507?version=2.

More…

PROTON POLARIZATION DUE TO A TWO PARTICLE SPLITTING OF A HE-3 NUCLEUS BY LINEARLY POLARIZED PHOTONS

Gorbenko, V.G. ; Zybalov, A.A. ; Karnaukhov, I.M. ; et al.
JETP Lett. 42 (1985) 428-430, 1985.
Inspire Record 231769 DOI 10.17182/hepdata.16882

None

0 data tables match query

Tensor analyzing power T(20) in backward elastic d p scattering and breakup at 0-degrees between 3.5-GeV/c and 6.5-GeV/c

Azhgirey, L.S. ; Chernykh, E.V. ; Kobushkin, A.P. ; et al.
Phys.Lett.B 391 (1997) 22-28, 1997.
Inspire Record 456818 DOI 10.17182/hepdata.28323

The tensor analyzing power T 20 for the p ( d , p d) and p ( d , p ) pn reactions θ cm p = 180° have been measured at incident deuteron momenta from 3.5 to 6.5 GeV/ c . For both reactions T 20 remains negative up to internal momentum k ⋍ 0.85 GeV/ c and show a rich structure beyond the region where T 20 is expected to be determined by the S - and D -states of the deuteron. The T 20 data for deuteron breakup without pion production, close to the backward elastic kinematics, were obtained simultaneously with the elastic data.

0 data tables match query

SPIN EFFECTS IN CUMULATIVE PRODUCTION OF PROTONS AND DEUTERONS IN PROTON - NUCLEUS INTERACTIONS AT 16-GeV TO 64-GeV

Belyaev, I.M. ; Vlasov, N.V. ; Gavrishchuk, O.P. ; et al.
484-488, 1989.
Inspire Record 285499 DOI 10.17182/hepdata.38741

None

0 data tables match query

A measurement of the transverse polarization of Lambda-hyperons produced in n C reactions in the EXCHARM experiment.

The EXCHARM collaboration Aleev, A.N. ; Balandin, V.P. ; Dvalishvili, E.A. ; et al.
Eur.Phys.J.C 13 (2000) 427-432, 2000.
Inspire Record 509253 DOI 10.17182/hepdata.43333

New precise data of the$\Lambda^0$polarization are obtained in the EXCHARM experiment at the Serpukhov accelerator. The$\Lambda^0$

0 data tables match query

Angular analysis and differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2015) 179, 2015.
Inspire Record 1380188 DOI 10.17182/hepdata.73774

An angular analysis and a measurement of the differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$ are presented, using data corresponding to an integrated luminosity of $3.0\, {\rm fb^{-1}}$ of $pp$ collisions recorded by the LHCb experiment at $\sqrt{s} = 7$ and $8\, {\rm TeV}$. Measurements are reported as a function of $q^{2}$, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range $1<q^2<6\, {\rm GeV}^{2}/c^{4}$, where precise theoretical calculations are available, the differential branching fraction is found to be more than $3\,\sigma$ below the Standard Model predictions.

1 data table match query

The signal yields for $B_s^0 \to \phi\mu^+\mu^-$ decays, as well as the differential branching fraction relative to the normalisation mode and the absolute differential branching fraction, in bins of $q^2$. The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the branching fraction of the normalisation mode.