We present measurements of the cross section and double-helicity asymmetry $A_{LL}$ of direct-photon production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV. The measurements have been performed at midrapidity ($|\eta|<0.25$) with the PHENIX detector at the Relativistic Heavy Ion Collider. At relativistic energies, direct photons are dominantly produced from the initial quark-gluon hard scattering and do not interact via the strong force at leading order. Therefore, at $\sqrt{s}=510$ GeV, where leading-order-effects dominate, these measurements provide clean and direct access to the gluon helicity in the polarized proton in the gluon-momentum-fraction range $0.02<x<0.08$, with direct sensitivity to the sign of the gluon contribution.
Cross sections for inclusive and isolated direct photons as a function of $p_T$. Not shown are 10% absolute luminosity uncertainties.
Double helicity asymmetry $A_{LL}$ $vs$ $p_{T}$ for isolated direct-photon production in polarized $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV at midrapidity. Not shown are $3.9 \times 10^{-4}$ shift uncertainty from relative luminosity and 6.6% scale uncertainty from polarization.
A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.
Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.
Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.
Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.
Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)
A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton-proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$, at a center-of-mass energy $\sqrt{s} =$ 13 TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.
Exclusion limit for BrHXX_Br2Xee
Exclusion limit for BrHXX_Br2Xmumu
Exclusion limit for BrHXX_Br2Xll
A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb$^{-1}$. This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of $R$-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.
Event yields in the control samples in data. The ''one-vertex'' events correspond to events containing exactly one vertex with the specified number of tracks. The ''two-vertex'' events have two or more vertices containing the specified numbers of tracks. We seek the signal in the $\geq$5-track two-vertex sample.
The distribution of distances between vertices in the $x$-$y$ plane, $d_{\mathrm{VV}}$, for three simulated multijet signals each with a mass of 1600 GeV, with the background template distribution overlaid. The production cross section for each signal model is assumed to be the lower limit excluded by CMS-EXO-17-018, corresponding to values of 0.8, 0.25, and 0.15 fb for the samples with $c\tau =$ 0.3, 1.0, and 10 mm, respectively. The last bin includes the overflow events. The two vertical pink dashed lines separate the regions used in the fit.
Multijet signal efficiencies as a function of the signal mass and lifetime for events satisfying all event and vertex requirements, with corrections based on systematic differences in the vertex reconstruction efficiency between data and simulation.
The NA62 experiment reports the branching ratio measurement BR$(K^+ \rightarrow \pi^+ \nu\bar{\nu}) = (10.6^{+4.0}_{-3.4} |_{\rm stat} \pm 0.9_{\rm syst}) \times 10 ^{-11}$ at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016-2018. This provides evidence for the very rare $K^+ \rightarrow \pi^+ \nu\bar{\nu}$ decay, observed with a significance of 3.4$\sigma$. The experiment achieves a single event sensitivity of $(0.839\pm 0.054)\times 10^{-11}$, corresponding to 10.0 events assuming the Standard Model branching ratio of $(8.4\pm1.0)\times10^{-11}$. This measurement is also used to set limits on BR($K^+ \to \pi^+ X$), where $X$ is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.
Observed and expected upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL.
Observed upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL as functions of X mass and lifetime.
Exclusion region limits on coupling strength \(sin^{2}\theta\) at 90% CL as a function of X mass, for visible X decays.
The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The NA62 experiment at CERN reports searches for $K^+\to\mu^+N$ and $K^+\to\mu^+\nu X$ decays, where $N$ and $X$ are massive invisible particles, using the 2016-2018 data set. The $N$ particle is assumed to be a heavy neutral lepton, and the results are expressed as upper limits of ${\cal O}(10^{-8})$ of the neutrino mixing parameter $|U_{\mu4}|^2$ for $N$ masses in the range 200-384 MeV/$c^2$ and lifetime exceeding 50 ns. The $X$ particle is considered a scalar or vector hidden sector mediator decaying to an invisible final state, and upper limits of the decay branching fraction for $X$ masses in the range 10-370 MeV/$c^2$ are reported for the first time, ranging from ${\cal O}(10^{-5})$ to ${\cal O}(10^{-7})$. An improved upper limit of $1.0\times 10^{-6}$ is established at 90% CL on the $K^+\to\mu^+\nu\nu\bar\nu$ branching fraction.
See caption of Fig 5.
A search for the $K^{+}\rightarrow\pi^{+}X$ decay, where $X$ is a long-lived feebly interacting particle, is performed through an interpretation of the $K^{+}\rightarrow\pi^{+}\nu\bar{\nu}$ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of $X$ masses, $0$-$110\,\text{MeV}/c^{2}$ and $154$-$260\,\text{MeV}/c^{2}$, and lifetimes above $100\,\text{ps}$ are considered. The limits set on the branching ratio, $\text{BR}(K^{+}\rightarrow\pi^{+}X)$, are competitive with previously reported searches in the first mass range, and improve on current limits in the second mass range by more than an order of magnitude.
Observed and expected upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL.
Observed upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL as functions of X mass and lifetime.
Exclusion region limits on coupling strength \(sin^{2}\theta\) at 90% CL as a function of X mass, for visible X decays.
The NA62 experiment at the CERN SPS reports a study of a sample of $4 \times10^{9}$ tagged $\pi^0$ mesons from $K^+ \to \pi^+ \pi^0 (\gamma)$, searching for the decay of the $\pi^0$ to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of $4.4 \times10^{-9}$ is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model-independent upper limit on the branching ratio for the decay $K^+ \to \pi^+ X$, where $X$ is a particle escaping detection with mass in the range 0.110-0.155 GeV$/c^2$ and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming $X$ to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.
The expected upper limit refers to absence of signal.
See caption of Fig 6.
ALP width dominantly visible, see caption of Fig 7.