None
No description provided.
Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.
Differential cross section for an average W of 1.75 GeV.
Differential cross section for an average W of 1.79 GeV.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.
The CLEO II detector is used to search for the production of χc2 states in two-photon interactions. We use the signature χc2→γJ/ψ→γl+l− with l=e,μ. Using 1.49 fb−1 of data taken with beam energies near 5.29 GeV, the two-photon width of the χc2 is determined to be Γ(χc2→γγ)=1.08±0.30(stat)±0.26(syst) keV, in agreement with predictions from perturbative QCD.
Results below were obtained usign J/psi from-factors in the two photon propogators, and assumes that only transversely polarized photons are significant inthe production of the CHI/C2(1P) state.
No description provided.
A measurement of the cross section for γγ→pp¯ is performed at two-photon center-of-mass energies between 2.00 and 3.25 GeV. These results are obtained using e+e−→e+e−pp¯ events selected from 1.31 fb−1 of data taken with the CLEO II detector. The measured cross section is in reasonable agreement with previous measurements and is in excellent agreement with recent calculations based on a diquark model. However, leading order QCD calculations performed using the Brodsky-Lepage formalism are well below the measured cross section.
Data read from graph.
Data read from graph.
Data read from graph.
Results are presented on the elastic scattering of photons by protons. The incident photon energy ranged from 0.55 GeV to 4.5 GeV, and the four-momentum transfer t ranged from 0.12 to 1.0 (GeV/c)2. The data at large angles, 60°<θ*<115°, are characterized by a pronounced excitation of the D13(1518) resonance, a shoulder in the 1688-MeV mass region, and a precipitous drop thereafter in the cross section as a function of incident energy. The low-t data are characterized by a diffraction slope of 5 (GeV/c)−2. The data are inconsistent with the predictions of the vector-dominance model if the latter is restricted to ρ0, ω, and φ vector mesons.
No description provided.
The angular distribution for the reaction n+p→d+γ has been measured at neutron energies of 475, 560, 625, and 750 MeV. Results based on 31 000 events at nine scattering angles are reported and compared with existing data for the inverse reaction, γ+d→n+p. The angular distributions are found to agree, as predicted by time-reversal invariance.
No description provided.