Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$
No description provided.
Durham and JADE algoritms were used.
Properties of the hadronic final state in photoproduction events with large transverse energy are studied at the electron-proton collider HERA. Distributions of the transverse energy, jets and underlying event energy are compared to $\overline{p}p$ data and QCD calculations. The comparisons show that the $\gamma p$ events can be consistently described by QCD models including -- in addition to the primary hard scattering process -- interactions between the two beam remnants. The differential jet cross sections $d\sigma/dE_T~{jet}$ and $d\sigma/d\eta~{jet}$ are measured.
No description provided.
Additional overall systematic error of 26 pct.
Additional overall systematic error of 26 pct.
The production of Jψ mesons in Z0 decays is studied using 3.6 million hadronic events recorded by the OPAL detector at LEP. The inclusive Z0 to Jψ and b-quark to Jψ branching ratios are measured from the total yield of Jψ mesons, identified from their decays into lepton pairs. The Jψ momentum distribution is used to study the fragmentation of b-quarks. The production rate of ψ′ mesons, identified from their decays into a Jψ and a π+π− pair, is measured as well. The following results are obtained: ${Br(Z^{0}⌝ghtarrow {⤪ J}/ i X)=(3.9pm 0.2pm 0.3)cdot 10^{-3} {⤪ and} ↦op Br(Z^0⌝ghtarrow i ^⌕ime X)=(1.6pm 0.3pm 0.2)cdot 10^{-3}, }$ where the first error is statistical and the second systematic. Finally the Jψ sample is used to reconstruct exclusive b-hadron decays and calculate the corresponding b-hadron branching ratios and masses.
No description provided.
No description provided.
No description provided.
This paper describes new measurements from CLEO of the inclusive B→Ds+X branching fraction as well as the B+→Ds(*)+D¯(*)0 and B0→Ds(*)+D(*)− branching fractions. The inclusive branching fraction is B(B→Ds+X)=(12.11±0.39±0.88±1.38)% where the first error is statistical, the second is the systematic error, and the third is the error due to the uncertainty in the Ds+→φπ+ branching fraction. The branching fractions for the B→Ds(*)+D¯(*) modes are found to be between 0.9% and 2.4% and are significantly more precise than previous measurements. The sum of the B→Ds(*)+D¯(*) branching fractions is consistent with the results of fits to the inclusive Ds+ momentum spectrum. Factorization is used to arrive at a value for fDs, the Ds+ decay constant. © 1996 The American Physical Society.
FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant. Three different methods are used: 1) C=MUNU: D/S+ --> MU+ NUMU, 2) C = ENU: B --> D/S+ D*BAR / B --> D*BAR E+ NU, and 3) C = PI : B --> D/S+ D*BAR / B0 - -> PI+(RHO+) D*BAR-. The F(D/S) is evaluated from B decay assuming the factorization.
Using the CLEO II detector operating at the e + e − Cornell Electron Storage Ring (CESR), we present evidence for new decay modes of the Ξ c + into Ξ 0 π + , Ξ 0 π + π 0 , and Ξ 0 π + π − π + . The branching ratios of these decay modes, relative to Ξ c + → Ξ − π + π + , have been measured to be 0.55±0.13±0.09, 2.34±0.57±0.37, and 1.74±0.42±0.27, respectively.
Charge conjugate modes are imlied. P(P=3,C=MAX) is the maximum momentum value and given by P(P=3,C=MAX)**2 = E(P=1)**2 - M(P=3)**2).
A search has been made for direct production of heavy quarkonium states in more than 3 million hadronic Z0 decays in the 1991–1994 DELPHI data. Prompt J/ψ, ψ(2S) and Υ candidates have been searched for through their leptonic decay modes using criteria based on the kinematics and decay vertex positions. New upperlimits are set at the 90% confidence level for Br(Z0 → (QQ) X)/Br (Z0 → hadrons) for various strong production mechanisms of J/ψ and Υ these range down to 0.9 × 10−4. The limits are set in the presence of a small excess (∼ 1% statistical probability of a background fluctuation) in the sum of candidates from prompt J/ψ, ψ(2S), Υ(1S),Υ(2S) and Υ(3S) relative to the estimated background.
The analysis of hadrons (from X) provides to distinguish of the various decay modes of Z-boson (see text).
No description provided.
An analysis is presented of inclusive π0 production in Z0 decays measured with the DELPHI detector. At low energies, π0 decays are reconstructed by using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to $x_p={2cdot p≪/{sqrt s}=0.75}$) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for qq̅ and bb̅ events. The number of π0’s per hadronic Z0 event is $N(≪^0)/Z_{had} ^0=9.2pm 0.2({⤪ stat})pm 1.0 ({⤪ syst})$ and for bb̅ events the number of π0’s is ${⤪ N}(≪^0)/{⤪ b⋏r b}=10.1pm 0.4({⤪ stat})pm 1.1 ({⤪ syst})$. The ratio of the number of π0’s in bb̅ events to hadronic Z0 events is less affected by the systematic errors and is found to be 1.09 ±0.05 ±0.01. The measured π0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the $xi_{⤪ p}={⤪ ln}(1/{⤪ x_p})$ distribution is $xi_p^{⋆ar}=3.90_{-0.14}^{+0.24}.$ The average number of π0’s from the decay of primary B hadrons is found to be N(B → π0X)/B hadron = 2.78 ± 0.15(stat) ± 0.60(syst).
Differential cross section for all events.
Mean PI0 multiplicity extrapolated below 0.011 with JETSET 7.3.
Differential cross section for the enriched (b bbar) data set.
We report on the analysis of Charmonium and Bottomium states produced in p-Si interactions at s =38.7 GeV . The data have been collected with the open geometry spectrometer of the E771 Experiment at the FNAL High Intensity Lab. J ψ , ψ′ and γ total cross sections as well as the ratio B(ψ′ → μμ)σ(ψ′) (B( J ψ → μμ)σ( J ψ )) have been measured. Results are compared with theoretical predictions and with results at other energies.
The total inclusive cross section per nucleon has been evaluated assuming an atomic weight dependence of A**POWER with POWER = 0.920 +- 0.008.
combined UPSI(1S) and UPSI(2S) cross section.
No description provided.
We present a new measurement of the total photoproduction cross section performed with the H1 detector at HERA. For an average centre of mass energy of 200GeV a value of $\sigma_{tot}~{\gamma{p}}= 165\pm2\pm11\mu$b has been obtained. A detailed analysis of the data in adequate kinematic regions enabled a decomposition of the total cross section in its elastic, single diffractive dissociation and remaining non-diffractive parts, based on safe assumptions on the double diffractive dissociation contribution.
No description provided.
Total GAMMA P cross section.
A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.
Differential DELTA(1232)++ cross section. Errors are combined statistics and systematics.
Mean multiplicities. Extrapolation to full x range using a combination of JETSET, HERWIG and UCLA models. The second systematic error comes from the uncertainty in the extrapolation.