A search has been made for direct photon production in pBe interactions at 200 and 300 GeV/ c over the kinematic region 1.5 < P ⊥ < 4.0 GeV/ c and −0.7 < X F < 0 (90° < θ cms < 160°). An excess of single photons above that which is predicted from the measured π 0 and η 0 production is observed. Theratio of γ / π 0 production is calculated assuming that the excess arises from direct photon production. We find that this ratio averages 0.070 ± 0.025 (including systematic errors) in this region of X F and P ⊥ for our 200 and 300 GeV/ c data. We have used our measured value of the η / π 0 ratio of 0.47 ± 0.10 in the determination of the γ / π 0 ratio. The variation of γ / π 0 with X F , P ⊥ , X R and θ cms presented.
Measurements of recognized π0 production in p-Be collisions for 0.1
The production of the Jψ resonance in 125-GeV/c p¯ and φ− interactions with Be, Cu, and W targets has been measured. The cross section per nucleon for Jψ production is suppressed in W interactions relative to the lighter targets, especially at large values of Feynman x, which is opposite to the expectation from the various explanations of the European Muon Collaboration effect. Models incorporating modifications of the gluon structure functions in heavy targets show qualitative agreement with the data.
We have measured the cross section for production of ψ and ψ′ in p¯ and π− interactions with Be, Cu, and W targets in experiment E537 at Fermilab. The measurements were performed at 125 GeV/c using a forward dimuon spectrometer in a closed geometry configuration. The gluon structure functions of the p¯ and π− have been extracted from the measured dσdxF spectra of the produced ψ's. From the p¯W data we obtain, for p¯, xG(x)=(2.15±0.7)[1−x](6.83±0.5)[1+(5.85±0.95)x]. In the π− case, we obtain, from the W and the Be data separately, xG(x)=(1.49±0.03)[1−x](1.98±0.06) (for π−W), xG(x)=(1.10±0.10)[1−x](1.20±0.20) (for π−Be).
The cross section for the reaction p¯N→μ+μ−X with muon pairs in the mass range 4
We have studied muon pairs with an invariant mass between 4 and 9 GeV/c2 produced in p¯N and π−N interactions at an incident momentum of 125 GeV/c. The experiment was performed at Fermilab using a tungsten target and a special beam enriched to contain 18% antiprotons. We compare differential distributions as functions of the dimuon invariant mass, Feynman x, transverse momentum, and decay angles of the dimuon to the predictions of the Drell-Yan model including QCD corrections. Quark structure functions for the p¯ and π− are extracted. Comparisons of the antiproton data to the Drell-Yan model are significant because the cross sections depend principally on the valence-quark structure functions which are accurately determined by deep-inelastic scattering measurements. The measured absolute cross section (integrated over positive Feynman x and all transverse momenta) is 0.106±0.005±0.008 nb/nucleon for the p¯N interaction and 0.107±0.003±0.009 nb/nucleon for the π−N interaction, where the quoted errors are statistical and systematic, respectively. Normalization (K) factors that are required to bring the naive Drell-Yan and first-order QCD predictions into agreement with the measurements are extracted, and the uncertainties involved in such comparisons are examined.
The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.
We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05
We report on the analysis of Charmonium and Bottomium states produced in p-Si interactions at s =38.7 GeV . The data have been collected with the open geometry spectrometer of the E771 Experiment at the FNAL High Intensity Lab. J ψ , ψ′ and γ total cross sections as well as the ratio B(ψ′ → μμ)σ(ψ′) (B( J ψ → μμ)σ( J ψ )) have been measured. Results are compared with theoretical predictions and with results at other energies.
We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.