Hadron production by e + e − annihilation has been studied for c.m. energies W between 13 and 31.6 GeV. As a function of 1n W the charged particle multiplicity grows faster at high energy than at lower energies. This is correlated with a rise in the plateau of the rapidity distribution. The cross section s d σ /d x is found to scale within ±30% for x > 0.2 and 5 ⩽ W ⩽ 31.6 GeV.
CHARGED PARTICLE MULTIPLICITIES.
RAPIDITY DISTRIBUTION.
RAPIDITY DISTRIBUTION.
Elastic cross-section measurements are presented for π ± −p at 20 GeV/ c and π − −p at 30 GeV/ c incident momenta in the large angle region (50° to 90° in the c.m. system). The data are compared with published lower energy elastic cross sections. A test is made of the dimensional counting rules for π ± −p elastic scattering and some indication of a deviation from this rule is observed in the π − −p case. A comparison is also made with the predictions of the constituent interchange model. Although the broad features of the predictions are confirmed, there are some important discrepancies. Finally, the predictions of the model due to Preparata and Soffer are also compared with the new data.
No description provided.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
Three narrow resonances have been observed in e+e− annihilation into hadrons at total energies between 9.4 and 10.4 GeV. Measurements of mass spacing and ratios of lepton pair widths support the interpretation of these "ϒ" states as the lowest triplet-S levels of the bb¯ quark-antiquark system.
No description provided.
The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.
.
.
.
A fourth state in the upsilon energy region has been seen in e+e− collisions at the Cornell Electron Storage Ring. A resonance is observed with a mass 1112±5 MeV above the lowest upsilon state. The 9.6-MeV rms width is greater than the 4.6-MeV energy resolution of the e+e− beams. The observed characteristics of the new state make it a likely candidate for the 4S3 state of the bb¯ system, lying above the threshold for the production of B mesons.
NOT CORRECTED FOR TAU HEAVY LEPTON PRODUCTION NOR TWO-PHOTON COLLISIONS.
We have measured the reactions e + e − → e + e − → μ + μ − and e + e − → γγ at c.m. energies between 12 and 31.6 GeV. Excellent agreement with the predictions of QED has been found, resulting in cut off parameters Λ + > 112 GeV and Λ − > 139 GeV for the first process and Λ + > 34 GeV and Λ − > 42 GeV (95% c.1.) for the last one. A limit on the Weinberg angle of sin 2 θ W < 0.55 (95% c.1.) has been obtained.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
Inclusive K 0 -production has been measured in e + e - annihilation at a center of mass energy of about W = 30 GeV. The ratio of K 0 + K 0 production to μ + μ - production is R K 0 = 5.6 ± 1.1 (statist. error) ± 0.8 (system.error) This value is about a factor of three higher than R K 0 at W = 7 GeV. The cross sections ( s / β ) d σ /d x is consistent with a scaling behaviour.
No description provided.
DIFFERENTIAL CROSS SECTION.
INVARIANT CROSS SECTION.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.