Date

Measurement of the Bottom Quark Production Cross-Section in Proton - anti-Proton Collisions at s**(1/2) = 0.63-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 213 (1988) 405, 1988.
Inspire Record 265001 DOI 10.17182/hepdata.29892

We summarize the results obtained in the UA1 experiment on the production of bottom quarks in proton-antiproton collisions at √ s =0.63 TeV. Independent muon data samples are used to determine the bottom quark production cross section in different transverse momentum ranges from 6 to 30 GeV. A recent theoretical calculation to O(α s 3 ) of the inclusive bottom quark transverse momentum spectrum in hadronic collisions shows reasonable agreement with the data. We extrapolate the integral P T distribution to P T =0 and in rapidity to estimate the total cross section forthe production of bottom quark pairs. Assuming the shape in P T and rapidity given by the O(α s 3 ) calcultaion, we obtain σ( p p→b b +X) = 10.2 ±3.3 μb .

1 data table

No description provided.


Observation of the Charmed Strange Baryon $\Xi(c$)0

The CLEO collaboration Avery, P. ; Besson, D. ; Garren, L. ; et al.
Phys.Rev.Lett. 62 (1989) 863, 1989.
Inspire Record 267892 DOI 10.17182/hepdata.20029

We present evidence from the CLEO detector for the charmed strange baryon Ξc0. It is seen in nonresonant e+e− annihilations at s of 10.5 GeV through its decay to Ξ−π+. The measured Ξc0 mass is 2471 ± 3 ± 4 MeV/c2.

1 data table

Production cross section times branching fraction for the sum of both particle and antiparticle. Error contains both statistics and systematics. X is defined as SQRT(P(P=3)**2/(EBEAM**2-M(P=3)**2)).


$\Sigma(c$)++ and $\Sigma(c$)0 Production From $e^+ e^-$ Annihilation in the $\Upsilon$ Energy Region

The CLEO collaboration Bowcock, T.J.V. ; Kinoshita, K. ; Pipkin, F.M. ; et al.
Phys.Rev.Lett. 62 (1989) 1240, 1989.
Inspire Record 25467 DOI 10.17182/hepdata.47269

We have observed Σc++ and Σc0 baryons in nonresonant e+e− interactions through their decays to Λc+π± using the CLEO detector. The mass difference M(Σc++)-M(Λc+) is measured to be 167.8±0.4±0.3 MeV; for M(Σc0)-M(Λc+) we find 167.9±0.5±0.3 MeV. Σc decay accounts for (18±3±5)% of Λc+ production.

2 data tables

The cross section ratio is multiplied by a factor of 1.5 to account for theunobserved SIGMA/C(2455)+.

No description provided.


A Study of the General Characteristics of Proton - anti-Proton Collisions at s**(1/2) = 0.2-TeV to 0.9-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Nucl.Phys.B 335 (1990) 261-287, 1990.
Inspire Record 280412 DOI 10.17182/hepdata.49590

The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.

12 data tables

No description provided.

Invariant cross section of charged hadrons.

Inclusive cross section for single charged hadrons as a function of PT for the pseudorapdity region 0.8 to 4 for centre of mass energy 900 GeV.. Data read from plot.

More…

Properties of Hadronic Events in e$^{+} $e$^{-}$ Annihilation at $S^{(1/2)}=91$-{GeV}

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 234 (1990) 209-218, 1990.
Inspire Record 283354 DOI 10.17182/hepdata.29739

We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.

1 data table

NO RAD. CORR APPLIED.


Measurement of the Z0 Mass and Width with the OPAL Detector at LEP

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 231 (1989) 530-538, 1989.
Inspire Record 282821 DOI 10.17182/hepdata.29757

We report an experimental determination of the cross section for e + e − → hadrons from a scan around the Z 0 pole. On the basis of 4350 hadronic events collected over seven energy points between 89.26 GeV and 93.26 GeV we obtain a mass of m z =91.01±0.05±0.05 GeV, and a total decay width of Γ z =2.60±0.13 GeV. In the context of the standard model t these results imply 3.1 ± 0.4 neutrino generations.

1 data table

No description provided.


Determination of the Number of Light Neutrino Species

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 231 (1989) 519-529, 1989.
Inspire Record 282904 DOI 10.17182/hepdata.29758

The cross-section for e + e − → hadrons in the vicinity of the Z boson peak has been measured with the ALEPH detector at the CERN Large Electron Positron collider, LEP. Measurements of the Z mass, M z = (91.174±0.070) GeV, the Z width Γ z =(2.68±0.15) GeV, and of the peak hadronic cross-section, σ had peak =(29.3±1.2) nb, are presented. With the constraints of the standard electroweak model, the number of light neutrino species is found to be N v =3.27±0.30. this results rules out of the possibility of a fourth type of light neutrino at 98% CL.

2 data tables

Selection from TPC tracks.

Selection by calorimeters.


Measurement of the Decay of the $\Z^0$ Into Lepton Pairs

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 379-388, 1990.
Inspire Record 283146 DOI 10.17182/hepdata.29723

We report on a measurement of the processes e + e − →e + e − , e + e − → μ + μ − , and e + e − → τ + τ − near the Z 0 pole. On the basis of 163 e + e − , 101 μ + μ − and 87 τ + τ − events we obtain Γ ee =89±4±4 MeV, Γ μμ =85±9±6 MeV and Γ ττ =87±10±8 MeV, compatible with the standard model. Combining these with our previous results on hadronic Z 0 decays, we find a hadronic width Γ had =1787±81±90 MeV and an invisible width Γ inv =552±85±71 MeV.

2 data tables

Statistical errors only.

Statistical errors only.


A Search for the Top and $b^\prime$ Quarks in Hadronic $\Z^0$ Decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 236 (1990) 364-374, 1990.
Inspire Record 283784 DOI 10.17182/hepdata.29702

We report on a search for new quarks in hadronic Z° decays. From the event shape analysis of a data sample containing 2185 multihadronic annihilation events, we observe no evidence for the top or b' quarks. We derive limits for the top and b' quark masses under the assumption of various possible standard model and non-standard model decay schemes. Our search is sensitive to quark masses larger than 23 GeV/ c 2 ; it yields the following lower limits at a 95% confidence level: 44.5 GeV/ c 2 for the top quark mass and 45.2 GeV/ c 2 for the b′ quark mass.

1 data table

Measured event shape distributions - uncorrected.


A Study of Jet Production Rates and a Test of QCD on the Z0 Resonance

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 389-398, 1990.
Inspire Record 283783 DOI 10.17182/hepdata.29753

Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.

1 data table

Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.