Meson production in π−p and π+n interactions at 1.7 GeV/c has been studied in two bubble-chamber exposures. Combined results are presented with emphasis on single-pion production (4300 events) which is dominated by the formation of the ρ0 meson in peripheral interactions, and on double-pion production (1100 events) which shows strong formation of the ω meson. These data are compared with the predictions of particle-exchange models, including absorption, and the effects of competing channels are discussed. Evidence for a two-pion decay mode of the ω is examined quantitatively. Processes with higher meson multiplicities are described.
No description provided.
The elastic scattering of 3.6 GeV/ c π + mesons by protons has been studied in a hydrogen bubble chamber experiment. The elastic cross section has a measured value of 7.07 ± 0.20 mb. The forward diffraction peak has been fitted in the region 0.05 ≦ − t ≦ 0.6 (GeV/ c ) 2 by a form (d σ /d t ) = Ae Bt , where A = 46.5 ± 1.8 mb/(GeV/ c ) 2 and B = 6.85 ± 0.20 (GeV/ c ) −2 . From this fit and the optical theorem, the magnitude of the ratio of real to imaginary forward amplitude is 0.39 ± 0.06, in reasonable agreement with dispersion relation calculations and simple Regge model predictions.
No description provided.
No description provided.
No description provided.
A study of the A2+ mass spectrum in π+p interactions at 3.7 GeVc is presented. For a cut of t′=0.1−2.0 GeV2 and on eliminating the Δ++ we find that the three-pion mass spectrum in the A2+ region is fitted by the dipole formula with a confidence level of 53% and a single Breit-Wigner formula with a confidence level of 11%. Our result thus favors A2+ splitting although a single Breit-Wigner fit cannot be ruled out. We also report the A2+ decay branching fractions measured over all t′ values. They are 0.78 ± 0.05, 0.15 ± 0.04, 0.06 ± 0.03, and < 0.02 for ρπ, ηπ, KK¯, and η′π, respectively, in good agreement with other experiments.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
The polarization parameter in π + p backward elastic scattering at 6 GeV/ c incident pion momentum has been measured using a butanol polarized proton target, a high intensity pion beam, and a scintillation hodoscope detection system. Details of the apparatus and data analysis are presented here, together with the final results.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
The polarization parameter in π − p elastic scattering has been measured in the backward angular region at an incident momentum of 6 GeV/ c . The measurements cover the range of four momentum transfer u = 0 to −1 (GeV/ c ) 2 , and were obtained with a high intensity pion beam, a butanol polarized proton target, and arrays of scintillation counter hodoscopes. The polarization is different from zero, in contradiction to the prediction of the naive one trajectory Regge-exchange model. It increases positively with the four-momentum transfer u, reaching a maximum of about 0.4 at u ≈ −0.3 (GeV/c)2. It then decreases and becomes slightly negative beyond u ≈ −0.5 (GeV/c)2. A variety of baryon exchange models are briefly reviewed and none are found to be in complete agreement with all the experimental data.
No description provided.
Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
The reactions of positive pions with protons yielding four charged particles and one or more neutrals have been studied, especially the reaction π+p→Δ++ω0→pπ+π+π−π0. The results presented in this paper were obtained from a 100 000-picture exposure of the Argonne-MURA 30-in. liquid hydrogen bubble chamber, with a beam of incident pions of 4.09−GeVc momentum. Comparisons have been made with corresponding results of other experiments at various incident beam momenta, and with the predictions of some theoretical models of the π+p interaction.
INCLUDING CORRECTIONS FOR BACKGROUND.
No description provided.
No description provided.