Showing 10 of 5976 results
In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.2$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.6$.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
IRing2 for HT2>=500 GeV, NJets>=5
IRing2 for HT2>=1000 GeV, NJets>=2
IRing2 for HT2>=1000 GeV, NJets>=3
IRing2 for HT2>=1000 GeV, NJets>=4
IRing2 for HT2>=1000 GeV, NJets>=5
IRing2 for HT2>=1500 GeV, NJets>=2
IRing2 for HT2>=1500 GeV, NJets>=3
IRing2 for HT2>=1500 GeV, NJets>=4
IRing2 for HT2>=1500 GeV, NJets>=5
IRing128 for HT2>=500 GeV, NJets>=2
IRing128 for HT2>=500 GeV, NJets>=3
IRing128 for HT2>=500 GeV, NJets>=4
IRing128 for HT2>=500 GeV, NJets>=5
IRing128 for HT2>=1000 GeV, NJets>=2
IRing128 for HT2>=1000 GeV, NJets>=3
IRing128 for HT2>=1000 GeV, NJets>=4
IRing128 for HT2>=1000 GeV, NJets>=5
IRing128 for HT2>=1500 GeV, NJets>=2
IRing128 for HT2>=1500 GeV, NJets>=3
IRing128 for HT2>=1500 GeV, NJets>=4
IRing128 for HT2>=1500 GeV, NJets>=5
ICyl16 for HT2>=500 GeV, NJets>=2
ICyl16 for HT2>=500 GeV, NJets>=3
ICyl16 for HT2>=500 GeV, NJets>=4
ICyl16 for HT2>=500 GeV, NJets>=5
ICyl16 for HT2>=1000 GeV, NJets>=2
ICyl16 for HT2>=1000 GeV, NJets>=3
ICyl16 for HT2>=1000 GeV, NJets>=4
ICyl16 for HT2>=1000 GeV, NJets>=5
ICyl16 for HT2>=1500 GeV, NJets>=2
ICyl16 for HT2>=1500 GeV, NJets>=3
ICyl16 for HT2>=1500 GeV, NJets>=4
ICyl16 for HT2>=1500 GeV, NJets>=5
IRing2 covariance for HT2>=500 GeV, NJets>=2 (Table 1)
IRing2 covariance for HT2>=500 GeV, NJets>=3 (Table 2)
IRing2 covariance for HT2>=500 GeV, NJets>=4 (Table 3)
IRing2 covariance for HT2>=500 GeV, NJets>=5 (Table 4)
IRing2 covariance for HT2>=1000 GeV, NJets>=2 (Table 5)
IRing2 covariance for HT2>=1000 GeV, NJets>=3 (Table 6)
IRing2 covariance for HT2>=1000 GeV, NJets>=4 (Table 7)
IRing2 covariance for HT2>=1000 GeV, NJets>=5 (Table 8)
IRing2 covariance for HT2>=1500 GeV, NJets>=2 (Table 9)
IRing2 covariance for HT2>=1500 GeV, NJets>=3 (Table 10)
IRing2 covariance for HT2>=1500 GeV, NJets>=4 (Table 11)
IRing2 covariance for HT2>=1500 GeV, NJets>=5 (Table 12)
IRing128 covariance for HT2>=500 GeV, NJets>=2 (Table 13)
IRing128 covariance for HT2>=500 GeV, NJets>=3 (Table 14)
IRing128 covariance for HT2>=500 GeV, NJets>=4 (Table 15)
IRing128 covariance for HT2>=500 GeV, NJets>=5 (Table 16)
IRing128 covariance for HT2>=1000 GeV, NJets>=2 (Table 17)
IRing128 covariance for HT2>=1000 GeV, NJets>=3 (Table 18)
IRing128 covariance for HT2>=1000 GeV, NJets>=4 (Table 19)
IRing128 covariance for HT2>=1000 GeV, NJets>=5 (Table 20)
IRing128 covariance for HT2>=1500 GeV, NJets>=2 (Table 21)
IRing128 covariance for HT2>=1500 GeV, NJets>=3 (Table 22)
IRing128 covariance for HT2>=1500 GeV, NJets>=4 (Table 23)
IRing128 covariance for HT2>=1500 GeV, NJets>=5 (Table 24)
ICyl16 covariance for HT2>=500 GeV, NJets>=2 (Table 25)
ICyl16 covariance for HT2>=500 GeV, NJets>=3 (Table 26)
ICyl16 covariance for HT2>=500 GeV, NJets>=4 (Table 27)
ICyl16 covariance for HT2>=500 GeV, NJets>=5 (Table 28)
ICyl16 covariance for HT2>=1000 GeV, NJets>=2 (Table 29)
ICyl16 covariance for HT2>=1000 GeV, NJets>=3 (Table 30)
ICyl16 covariance for HT2>=1000 GeV, NJets>=4 (Table 31)
ICyl16 covariance for HT2>=1000 GeV, NJets>=5 (Table 32)
ICyl16 covariance for HT2>=1500 GeV, NJets>=2 (Table 33)
ICyl16 covariance for HT2>=1500 GeV, NJets>=3 (Table 34)
ICyl16 covariance for HT2>=1500 GeV, NJets>=4 (Table 35)
ICyl16 covariance for HT2>=1500 GeV, NJets>=5 (Table 36)
IRing2 covariance, complete
1-IRing128 covariance, complete
1-ICyl16 covariance, complete
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_{21}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of $\Delta R$ between the leading charged particle jet and the dilepton system. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6d. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6e. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6f. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 7a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7d. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7e. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7f. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 8a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8d. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8e. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8f. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 36-40a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 51-55a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 66-70a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 26-30a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30c. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 41-45a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 56-60a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 31-35a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35c. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 46-50a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 61-65a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 6a. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 6a. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 101a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 105a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 107a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 111a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 113a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 101d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 103d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 105d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 107d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 109d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 111d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 111f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 112f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 113d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 115d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.
fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.
fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.
fig2_left_top_isobarpaper_star_blue_case2_ruru_nonzeros.
fig2_left_top_isobarpaper_star_grey_data_ruru_nonzeros.
fig2_left_top_isobarpaper_star_red_case3_ruru_nonzeros.
fig2_right_isobarpaper_star_grey_data_nonzero.
fig2_right_low_isobarpaper_star_red_case3_nonzero.
fig2_right_top_isobarpaper_star_blue_case2_nonzero.
fig3_olow_isobarpaper_star_blue_mean_multiplicity_ratio.
fig3_otop_isobarpaper_star_blue_open_mean_multiplicity_zrzr.
fig3_otop_isobarpaper_star_blue_solid_mean_multiplicity_ruru.
fig4_left_low_isobarpaper_star_blue_v2_tpc_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig4_left_low_isobarpaper_star_green_v2_tpc_eta_gt1_ratio.
fig4_left_low_isobarpaper_star_purple_v2_subEv_ratio.
fig4_left_low_isobarpaper_star_red_v2_epd_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig4_left_low_isobarpaper_star_yellow_v2_EP_ratio.
fig4_left_top_isobarpaper_star_blue_open_v2_2_zrzr.
fig4_left_top_isobarpaper_star_blue_solid_v2_2_ruru.
fig4_left_top_isobarpaper_star_green_open_v2_tpc_eta_gt1_zrzr.
fig4_left_top_isobarpaper_star_green_solid_v2_tpc_eta_gt1_ruru.
fig4_left_top_isobarpaper_star_purple_open_v2_subEv_zrzr.
fig4_left_top_isobarpaper_star_purple_solid_v2_subEv_ruru.
fig4_left_top_isobarpaper_star_red_open_v2_tpcepd_zrzr.
fig4_left_top_isobarpaper_star_red_solid_v2_tpcepd_ruru.
fig4_left_top_isobarpaper_star_yellow_open_v2_EP_zrzr.
fig4_left_top_isobarpaper_star_yellow_solid_v2_EP_ruru.
fig4_right_low_isobarpaper_star_green_v2_4_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig4_right_low_isobarpaper_star_green_v2_zdc_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig4_right_top_isobarpaper_star_green_open_v2_4_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values". "Imaginary number of v_2{4} is presented as negative value”
fig4_right_top_isobarpaper_star_green_solid_v2_4_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values". "Imaginary number of v_2{4} is presented as negative value”
fig4_right_top_isobarpaper_star_grey_open_v2_zdc_zrzr.
fig4_right_top_isobarpaper_star_grey_solid_v2_zdc_ruru.
fig5_olow_isobarpaper_star_green_group-2. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig5_olow_isobarpaper_star_purple_group-4.
fig5_olow_isobarpaper_star_yellow_group-3. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig5_otop_isobarpaper_star_blue_group-1. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig5_otop_isobarpaper_star_green_group-2.
fig5_otop_isobarpaper_star_red_group-3. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig6_olow_isobarpaper_star_blue_solid_v2_ratio.
fig6_otop_isobarpaper_star_blue_open_v2_zrzr.
fig6_otop_isobarpaper_star_blue_solid_v2_ruru.
fig7_otop_isobarpaper_star_blue_open_Ddelta_zrzr.
fig7_otop_isobarpaper_star_blue_solid_Ddelta_ratio.
fig7_otop_isobarpaper_star_blue_solid_Ddelta_ruru.
fig8_olow_isobarpaper_star_blue_solid_Dgamma_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig8_otop_isobarpaper_star_blue_open_Dgamma_zrzr.
fig8_otop_isobarpaper_star_blue_solid_Dgamma_ruru.
fig9_olow_isobarpaper_star_blue_solid_kappa_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig9_otop_isobarpaper_star_blue_open_kappa_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig9_otop_isobarpaper_star_blue_solid_kappa_ruru.
fig10_left_low_isobarpaper_star_blue_v2_tpc_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_low_isobarpaper_star_green_v3_tpc_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_low_isobarpaper_star_red_v2_epd_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_low_isobarpaper_star_yellow_v3_epd_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_mid_isobarpaper_star_green_open_v3_tpc_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_mid_isobarpaper_star_green_solid_v3_tpc_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_mid_isobarpaper_star_yellow_open_v3_epd_zrzr.
fig10_left_mid_isobarpaper_star_yellow_solid_v3_epd_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_left_top_isobarpaper_star_blue_open_v2_tpc_zrzr.
fig10_left_top_isobarpaper_star_blue_solid_v2_tpc_ruru.
fig10_left_top_isobarpaper_star_red_open_v2_epd_zrzr.
fig10_left_top_isobarpaper_star_red_solid_v2_epd_ruru.
fig10_right_low_isobarpaper_star_blue_v3_subEv_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_low_isobarpaper_star_green_v3_tpc_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_low_isobarpaper_star_purple_v3_tpc_eta_gt1_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_low_isobarpaper_star_yellow_v3_epd_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_top_isobarpaper_star_blue_open_v3_subEv_zrzr.
fig10_right_top_isobarpaper_star_blue_solid_v3_subEv_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_top_isobarpaper_star_green_open_v3_tpc_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_top_isobarpaper_star_green_solid_v3_tpc_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_top_isobarpaper_star_purple_open_v3_tpc_eta_gt1_zrzr.
fig10_right_top_isobarpaper_star_purple_solid_v3_tpc_eta_gt1_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig10_right_top_isobarpaper_star_yellow_open_v3_epd_zrzr.
fig10_right_top_isobarpaper_star_yellow_solid_v3_epd_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig11_low_isobarpaper_star_black_g2_tpc_ratio.
fig11_low_isobarpaper_star_blue_g3_tpc_ratio.
fig11_low_isobarpaper_star_red_Ddelta_ratio.
fig11_mid_isobarpaper_star_blue_open_g3_tpc_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig11_mid_isobarpaper_star_blue_solid_g3_tpc_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig11_top_isobarpaper_star_black_open_g2_tpc_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig11_top_isobarpaper_star_black_solid_g2_tpc_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig12_low_isobarpaper_star_black_g2_subEv_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig12_low_isobarpaper_star_blue_g3_subEv_ratio.
fig12_low_isobarpaper_star_red_Ddelta_ratio.
fig12_mid_isobarpaper_star_blue_open_g3_subEv_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig12_mid_isobarpaper_star_blue_solid_g3_subEv_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig12_top_isobarpaper_star_black_open_g2_subEv_zrzr.
fig12_top_isobarpaper_star_black_solid_g2_subEv_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig13_low_isobarpaper_star_black_g2_epd_ratio.
fig13_low_isobarpaper_star_blue_g3_epd_ratio.
fig13_low_isobarpaper_star_red_Ddelta_ratio.
fig13_mid_isobarpaper_star_blue_open_g3_epd_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig13_mid_isobarpaper_star_blue_solid_g3_epd_ruru.
fig13_top_isobarpaper_star_black_open_g2_epd_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig13_top_isobarpaper_star_black_solid_g2_epd_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig14_low_isobarpaper_star_black_solid_k2_ratio.
fig14_low_isobarpaper_star_blue_solid_k3_ratio.
fig14_mid_isobarpaper_star_blue_open_k3_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig14_mid_isobarpaper_star_blue_solid_k3_ruru.
fig14_top_isobarpaper_star_black_open_k2_zrzr.
fig14_top_isobarpaper_star_black_solid_k2_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_lowerleftpanel_isobarpaper_star_blue_circle_tpc_ss_zrzr_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_lowerleftpanel_isobarpaper_star_blue_square_tpc_os_zrzr_40-50.
fig15_left_lowerleftpanel_isobarpaper_star_red_circle_tpc_ss_ruru_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_lowerleftpanel_isobarpaper_star_red_square_tpc_os_ruru_40-50.
fig15_left_lowerrightpanel_isobarpaper_star_blue_circle_epd_ss_zrzr_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_lowerrightpanel_isobarpaper_star_blue_square_epd_os_zrzr_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_lowerrightpanel_isobarpaper_star_red_circle_epd_ss_ruru_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_lowerrightpanel_isobarpaper_star_red_square_epd_os_ruru_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_midleftpanel_isobarpaper_star_blue_circle_tpc_ss_zrzr_30-40.
fig15_left_midleftpanel_isobarpaper_star_blue_square_tpc_os_zrzr_30-40.
fig15_left_midleftpanel_isobarpaper_star_red_circle_tpc_ss_ruru_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_midleftpanel_isobarpaper_star_red_square_tpc_os_ruru_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_midrightpanel_isobarpaper_star_blue_circle_epd_ss_zrzr_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_midrightpanel_isobarpaper_star_blue_square_epd_os_zrzr_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_midrightpanel_isobarpaper_star_red_circle_epd_ss_ruru_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_midrightpanel_isobarpaper_star_red_square_epd_os_ruru_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_topleftpanel_isobarpaper_star_blue_circle_tpc_ss_zrzr_20-30.
fig15_left_topleftpanel_isobarpaper_star_blue_square_tpc_os_zrzr_20-30.
fig15_left_topleftpanel_isobarpaper_star_red_circle_tpc_ss_ruru_20-30.
fig15_left_topleftpanel_isobarpaper_star_red_square_tpc_os_ruru_20-30.
fig15_left_toprightpanel_isobarpaper_star_blue_circle_epd_ss_zrzr_20-30. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_toprightpanel_isobarpaper_star_blue_square_epd_os_zrzr_20-30. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_left_toprightpanel_isobarpaper_star_red_circle_epd_ss_ruru_20-30.
fig15_left_toprightpanel_isobarpaper_star_red_square_epd_os_ruru_20-30.
fig15_right_lowerleftpanel_isobarpaper_star_blue_circle_tpc_Deltagamma_zrzr_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_right_lowerleftpanel_isobarpaper_star_red_circle_tpc_Deltagamma_ruru_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_right_lowerrightpanel_isobarpaper_star_blue_circle_epd_Deltagamma_zrzr_40-50. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_right_lowerrightpanel_isobarpaper_star_red_circle_epd_Deltagamma_ruru_40-50.
fig15_right_midleftpanel_isobarpaper_star_blue_circle_tpc_Deltagamma_zrzr_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_right_midleftpanel_isobarpaper_star_red_circle_tpc_Deltagamma_ruru_30-40.
fig15_right_midrightpanel_isobarpaper_star_blue_circle_epd_Deltagamma_zrzr_30-40. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_right_midrightpanel_isobarpaper_star_red_circle_epd_Deltagamma_ruru_30-40.
fig15_right_topleftpanel_isobarpaper_star_blue_circle_tpc_Deltagamma_zrzr_20-30.
fig15_right_topleftpanel_isobarpaper_star_red_circle_tpc_Deltagamma_ruru_20-30.
fig15_right_toprightpanel_isobarpaper_star_blue_circle_epd_Deltagamma_zrzr_20-30. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig15_right_toprightpanel_isobarpaper_star_red_circle_epd_Deltagamma_ruru_20-30. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig16_a_blue_zrzr.
fig16_a_red_ruru.
fig16_b.
fig17_a_blue_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig17_a_red_ruru.
fig17_b. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig18_a_blue_ruru_ZDCdg.
fig18_a_red_ruru_TPCdg.
fig18_b_blue_ruru_ZDCv2.
fig18_b_red_ruru_TPCv2.
fig18_c_blue_ruru_A. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig18_c_red_ruru_a.
fig18_d_red_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig18_e_blue_zrzr_ZDCdg.
fig18_e_red_zrzr_TPCdg.
fig18_f_blue_zrzr_ZDCv2.
fig18_f_red_zrzr_TPCv2.
fig18_g_blue_zrzr_A. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig18_g_red_zrzr_a. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig18_h_red_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig19_a_blue_zrzr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig19_a_red_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig19_b_blue_zrzr.
fig19_b_red_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig21_doubleratio.
fig22_doubleratio_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig22_doubleratio_zrzr.
fig22_fcme_ruru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig22_fcme_zrzr.
fig23_ratio_v22.
fig23_ratio_v24. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig23_ratio_v2z. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig23_v22_ru.
fig23_v22_zr.
fig23_v24_ru. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values". "Imaginary number of v_2{4} is presented as negative value”
fig23_v24_zr. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values". "Imaginary number of v_2{4} is presented as negative value”
fig23_v2z_ru.
fig23_v2z_zr.
fig24_a_isobarpaper_star_ruru_q2_0-20.
fig24_a_isobarpaper_star_ruru_q2_20-40.
fig24_a_isobarpaper_star_ruru_q2_40-60.
fig24_a_isobarpaper_star_ruru_q2_60-100.
fig24_b_isobarpaper_ruru.
fig24_c_isobarpaper_ruru.
fig24_d_isobarpaper_star_zrzr_q2_0-20.
fig24_d_isobarpaper_star_zrzr_q2_20-40.
fig24_d_isobarpaper_star_zrzr_q2_40-60.
fig24_d_isobarpaper_star_zrzr_q2_60-100.
fig24_e_isobarpaper_zrzr.
fig24_f_isobarpaper_zrzr.
fig25_a_isobarpaper_star_blue_open_zrzr_0-10.
fig25_a_isobarpaper_star_blue_solid_ruru_0-10.
fig25_b_isobarpaper_star_red_open_zrzr_10-30.
fig25_b_isobarpaper_star_red_solid_ruru_10-30.
fig25_c_isobarpaper_star_green_open_zrzr_30-50.
fig25_c_isobarpaper_star_green_solid_ruru_30-50.
fig25_d_isobarpaper_star_orange_open_zrzr_20-50.
fig25_d_isobarpaper_star_orange_solid_ruru_20-50.
fig25_e_isobarpaper_star_open_zrzr.
fig25_e_isobarpaper_star_solid_ruru.
fig25_f_isobarpaper_star_solid_ratio. "For points without systematic uncertainties, using the method for estimating systematic uncertainties as described in the paper yields 0 values"
fig26_isobarpaper_star_black_deltagamma_by_v2_1. "({/Symbol Dg}_{112}/v_{2})_{EP,TPC}" Group-1
fig26_isobarpaper_star_black_deltagamma_by_v2_2. "({/Symbol Dg}_{112}/v_{2})_{3PC,TPC}" Group-2
fig26_isobarpaper_star_black_deltagamma_by_v2_3. "({/Symbol Dg}_{112}/v_{2})_{3PC,TPC}" Group-3
fig26_isobarpaper_star_black_deltagamma_by_v2_4. "({/Symbol Dg}_{112}/v_{2})_{SE,TPC}" Group-2
fig26_isobarpaper_star_black_deltagamma_by_v2_5. "({/Symbol Dg}_{112}/v_{2})_{SE,TPC}" Group-3
fig26_isobarpaper_star_black_deltagamma_by_v2_6. "({/Symbol Dg}_{112}/v_{2})_{SE,TPC}" Group-4
fig26_isobarpaper_star_black_deltagamma_by_v2_7. "({/Symbol Dg}_{112}/v_{2})_{SP,EPD}" Group-2
fig26_isobarpaper_star_blue_R. "{/Symbol s}@^{-1}_{R_{/Symbol Y}_2}" Group-5
fig26_isobarpaper_star_darkgreen_k_9. "{/Symbol k}_{112}" Group-1
fig26_isobarpaper_star_darkgreen_k_10. "k_{2}" Group-2
fig26_isobarpaper_star_grey_deltagamma_by_v3. "({/Symbol Dg}_{123}/v_{3})_{3PC,TPC}" Group-2
fig26_isobarpaper_star_lightgreen_k. "k_{3}" Group-2
fig27_isobarpaper_star_black_deltagamma_by_v2_1. "({/Symbol Dg}_{112}/v_{2})_{EP,TPC}" Group-1
fig27_isobarpaper_star_black_deltagamma_by_v2_2. "({/Symbol Dg}_{112}/v_{2})_{3PC,TPC}" Group-2
fig27_isobarpaper_star_black_deltagamma_by_v2_3. "({/Symbol Dg}_{112}/v_{2})_{3PC,TPC}" Group-3
fig27_isobarpaper_star_black_deltagamma_by_v2_4. "({/Symbol Dg}_{112}/v_{2})_{SE,TPC}" Group-2
fig27_isobarpaper_star_black_deltagamma_by_v2_5. "({/Symbol Dg}_{112}/v_{2})_{SE,TPC}" Group-3
fig27_isobarpaper_star_black_deltagamma_by_v2_6. "({/Symbol Dg}_{112}/v_{2})_{SE,TPC}" Group-4
fig27_isobarpaper_star_black_deltagamma_by_v2_7. "({/Symbol Dg}_{112}/v_{2})_{SP,EPD}" Group-2
fig27_isobarpaper_star_blue_R.txt. "{/Symbol s}@^{-1}_{R_{/Symbol Y}_2}" Group-5
fig27_isobarpaper_star_darkgreen_k_9. "{/Symbol k}_{112}" Group-1
fig27_isobarpaper_star_darkgreen_k_10. "k_{2}" Group-2
fig27_isobarpaper_star_grey_deltagamma_by_v3. "({/Symbol Dg}_{123}/v_{3})_{3PC,TPC}" Group-2
fig27_isobarpaper_star_lightgreen_k. "k_{3}" Group-2
fig27_isobarpaper_star_purple_r_n_13. "r(m_{inv})" Group-3
fig27_isobarpaper_star_purple_r_n_14. "1/N@_{trk}^{offline}"
This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{4})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\text{min}\Delta R(bb)$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at leastfour $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{4})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
The measured normalised differential cross-section as a function of $N_{b-\text{jets}}$ in the $e\mu+\geq2b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}},l/c-\text{jet})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{4})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{4})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\text{min}\Delta R(bb)$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least two b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}},l/c-\text{jet})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{4})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{4})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\text{min}\Delta R(bb)$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
Searches for scalar leptoquarks pair-produced in proton-proton collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb$^{-1}$ is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first- and second-generation leptoquarks, respectively, as postulated in the minimal Buchm\"uller-R\"uckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the $Z\rightarrow ee$, $Z\rightarrow\mu\mu$ and $t\bar{t}$ processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the $Z\rightarrow\ell\ell$ measurements in observables sensitive to jet energies disagree with the data.
Inclusive cross-section and uncertainty from each source, for the dominant process in the each measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{ee}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{\mu\mu}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{e\mu}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{ee}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{\mu\mu}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{e\mu}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $ee jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Expected and observed 95% CL lower limits on first- and second-generation leptoquark masses for different values of $\beta$.
Event yields in the dimuon channel control regions with total uncertainties. The observed number of events is given in the first row. The background event numbers as obtained from the fit are shown together with the total uncertainties. The second row shows the total background expectation, the further rows show the breakdown into different background components.
Event yields in the dielectron channel control regions with total uncertainties. The observed number of events is given in the first row. The background event numbers as obtained from the fit are shown together with the total uncertainties. The second row shows the total background expectation, the further rows show the breakdown into different background components.
Distribution of $m_{LQ}^{min}$ in the training region for the BDT for the $ee jj$ and $\mu\mu jj$ channels. Data are shown together with predicted total background expectation.
Distribution of $m_{LQ}^{T}$ in the training region for the BDT for the $e\nu jj$ and $\mu\nu jj$ channels. Data are shown together with predicted total background expectation.
Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a $W$ boson ($t\bar{t}W$) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on $\sqrt{s}=13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive $t\bar{t}W$ production cross-section is measured to be $880 \pm 80$ fb, compared to a reference theoretical prediction of $745 \pm 50\,\textrm{(scale)} \pm 13\,\textrm{(2-loop approx.)} \pm 19\,\textrm{(PDF,} \alpha_{\textrm{S}})$ fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of $t\bar{t}W^{+}$ and $t\bar{t}W^{-}$ is measured inclusively to be ${A_{\mathrm{C}}^{\mathrm{rel}}} = 0.33 \pm 0.05$, in very good agreement with the theoretical prediction of $0.322 \pm 0.003\,\mathrm{(scale)} \pm 0.007\,\mathrm{(PDF)}$, as well as differentially.
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.
R32 for $H_{T2}$, 60 GeV < $p_{T,3}$
R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.2 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, pT,jet
R32 for delta y
R32 for delta y max
R32 for $m_{jj}$
R32 for $m_{jj, max}$
R43 for $H_{T2}$, 60 GeV < $p_{T,3}$
R43 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R43 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R43 for $H_{T2}$, pT,jet
R43 for $Delta y_{jj}$
R43 for $Delta y_{jj, max}$
R43 for $m_{jj}$
R43 for $m_{jj, max}$
R54 for $H_{T2}$, 60 GeV < $p_{T,3}$
R54 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R54 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R54 for $Delta y_{jj}$
R54 for $Delta y_{jj, max}$
R54 for $m_{jj}$
R54 for $m_{jj, max}$
R42 for $H_{T2}$, 60 GeV < $p_{T,3}$
R42 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R42 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R42, pT,jet
R42 for $Delta y_{jj}$
R42 for $Delta y_{jj, max}$
R42 for $m_{jj}$
R42 for $m_{jj}$
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >= 2
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >=3
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >=4
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >= 5
pTnincl
pTnincl
pTnincl
mjj max, $N_{jet}$ >= 2
mjj max, $N_{jet}$ >= 3
mjj max, $N_{jet}$ >= 4
mjj max, $N_{jet}$ >= 5
$m_{jj}$ $N_{jet}$ >= 2
$m_{jj}$ $N_{jet}$ >= 3
$m_{jj}$ $N_{jet}$ >= 4
$m_{jj}$ $N_{jet}$ >= 5
$Delta y_{jj}$ $N_{jet}$ >= 2
$Delta y_{jj}$ $N_{jet}$ >= 3
$Delta y_{jj}$ $N_{jet}$ >= 4
$Delta y_{jj}$ $N_{jet}$ >= 5
$Delta y_{jj, max}$, $N_{jet}$ >= 2
$Delta y_{jj, max}$, $N_{jet}$ >= 3
$Delta y_{jj, max}$, $N_{jet}$ >= 4
$Delta y_{jj, max}$, $N_{jet}$ >= 5
R32 for $H_{T2}$, 60 GeV < $p_{T,3}$
R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.2 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'B' (see text for explanation).
Position 'B' (see text for explanation).
Position 'B' (see text for explanation).
Position 'B' (see text for explanation).
Position 'B' (see text for explanation).
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.