Showing 10 of 80 results
Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}= 5.02$ TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of $0.5~\mathrm{nb}^{-1}$ and $1.4~\mathrm{nb^{-1}}$, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum $4 < p_\mathrm{T} < 30$ GeV and pseudorapidity $|\eta|<2.0$. The dominant sources of muons in this $p_\mathrm{T}$ range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon $p_\mathrm{T}$ and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass.
Summary of results for Inclusive HF muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for Inclusive HF muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for charm muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for bottom muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for charm muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for bottom muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Studies of the fragmentation of jets into charged particles in heavy-ion collisions can provide information about the mechanism of jet-quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. This paper presents a measurement of the angular distribution of charged particles around the jet axis in $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV Pb+Pb and $pp$ collisions, using the ATLAS detector at the LHC. The Pb+Pb and $pp$ data sets have integrated luminosities of 0.49 nb$^{-1}$ and 25 pb$^{-1}$, respectively. The measurement is performed for jets reconstructed with the anti-$k_{t}$ algorithm with radius parameter $R = 0.4$ and is extended to an angular distance of $r= 0.8$ from the jet axis. Results are presented as a function of Pb+Pb collision centrality and distance from the jet axis for charged particles with transverse momenta in the 1$-$63 GeV range, matched to jets with transverse momenta in the 126$-$316 GeV range and an absolute value of jet rapidity of less than 1.7. Modifications to the measured distributions are quantified by taking a ratio to the measurements in $pp$ collisions. Yields of charged particles with transverse momenta below 4 GeV are observed to be increasingly enhanced as a function of angular distance from the jet axis, reaching a maximum at $r=0.6$. Charged particles with transverse momenta above 4 GeV have an enhanced yield in Pb+Pb collisions in the jet core for angular distances up to $r = 0.05$ from the jet axis, with a suppression at larger distances.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
From Fig 9. Delta_D(pT,r) The differences between charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
Figure 10. Delta_Theta The differences between charged particle distributions around jets as a function of distance from the jet axis integrated over 1-4 GeV charged particle pT in different centrality intervals of PbPb and pp collisions at 5.02 TeV for dfferent jet pT ranges.
Figure 11. R_Theta The ratios of charged particle distributions around jets as a function of distance from the jet axis integrated over 1-4 GeV charged particle pT in different centrality intervals of PbPb and pp collisions at 5.02 TeV for dfferent jet pT ranges.
Figure 11. R_P The ratios of charged particle distributions around jets as a function of cumulative distance from the jet axis integrated over 1-4 GeV charged particle pT in different centrality intervals of PbPb and pp collisions at 5.02 TeV for dfferent jet pT ranges.
A measurement of $W^\pm$ boson production in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of $0.49\;\mathrm{nb^{-1}}$. The $W^\pm$ bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying $W^\pm$ bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for $W^+$ and $W^-$ bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the $W^\pm$ boson production cross-sections measured in $pp$ collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for $W^-$ ($W^+$) bosons.
Differential normalised production yields for $W^+$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.
Differential normalised production yields for $W^-$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.
Combined result for lepton charge asymmetry.
Normalised production yields of $W^+$ and $W^-$ bosons as a function of $⟨N_{\mathrm{part}}⟩$ shown for the combination of electron and muon decay channels.
Normalised production yields for $W^+$ bosons as a function of $⟨N_{\mathrm{part}}⟩$ for geometric parameters obtained with the MCGlauber v2.4 and v3.2.
Normalised production yields for $W^-$ bosons as a function of $⟨N_{\mathrm{part}}⟩$ for geometric parameters obtained with the MCGlauber v2.4 and v3.2.
Nuclear modification factor $R_{\mathrm{AA}}$ obtained from the fiducial $W^+$ and $W^-$ boson production yields as a function of $⟨N_{\mathrm{part}}⟩$.
The covariance matrix of the differential normalised production yields for $W^+$ bosons. Systematic uncertainties related to $T_{\mathrm{AA}}$ (1.6%) are not included.
The covariance matrix of the differential normalised production yields for $W^-$ bosons. Systematic uncertainties related to $T_{\mathrm{AA}}$ (1.6%) are not included.
The covariance matrix of the lepton charge asymmetry.
To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.
The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 0.3-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in p+Pb collisions.
The $c_{k}$ for the 0.3-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in p+Pb collisions.
The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in p+Pb collisions.
The $Var(v_{2}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $Var(v_{2}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $Var(v_{2}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $Var(v_{3}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $Var(v_{3}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $Var(v_{3}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $Var(v_{4}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $Var(v_{4}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $Var(v_{4}^{2})_{dyn}$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $Var(v_{2}^{2})_{dyn}$ for p+Pb collisions for the $p_T$ 0.3-2 GeV interval as a function $N_{ch}$.
The $Var(v_{2}^{2})_{dyn}$ for p+Pb collisions for the $p_T$ 0.3-5 GeV interval as a function $N_{ch}$.
The $Var(v_{2}^{2})_{dyn}$ for p+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $cov(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $cov(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $cov(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $cov(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $cov(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $cov(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $cov(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $cov(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $cov(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $cov(v_{2}^{2},[p_{T}])$ for p+Pb collisions for the $p_T$ 0.3-2 GeV interval as a function $N_{ch}$.
The $cov(v_{2}^{2},[p_{T}])$ for p+Pb collisions for the $p_T$ 0.3-5 GeV interval as a function $N_{ch}$.
The $cov(v_{2}^{2},[p_{T}])$ for p+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $\rho(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{ch}$.
The $\rho(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for p+Pb collisions for the $p_T$ 0.3-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for p+Pb collisions for the $p_T$ 0.3-5 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for p+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
The $\rho(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{part}$.
The $\rho(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{part}$.
The $\rho(v_{2}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{part}$.
The $\rho(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{part}$.
The $\rho(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{part}$.
The $\rho(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{part}$.
The $\rho(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{part}$.
The $\rho(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-5 GeV interval as a function $N_{part}$.
The $\rho(v_{4}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 1-2 GeV interval as a function $N_{part}$.
The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> mu- nu final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> mu- nu final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Combined fiducial cross-section measurements for W+ boson production in the W+ -> l+ nu (l = e, mu) final state.
Combined fiducial cross-section measurements for W- boson production in the W- -> l- nu (l = e, mu) final state.
Combined fiducial cross-section measurements for W boson production in the W -> l nu (l = e, mu) final state.
Combined fiducial cross-section measurements for Z/gamma* production in the Z/gamma* -> l- l+ (l = e, mu) final state.
Combined total cross-section measurements for W+ boson production in the W+ -> l+ nu (l = e, mu) final state.
Combined total cross-section measurements for W- boson production in the W- -> l- nu (l = e, mu) final state.
Combined total cross-section measurements for W boson production in the W -> l nu (l = e, mu) final state.
Combined total cross-section measurements for Z/gamma* production in the Z/gamma* -> l- l+ (l = e, mu) final state.
Measured fiducial cross-section ratio R_{W+-/Z} = sigma (W+/- -> l+/- nu/nubar) / sigma (Z/gamma^* -> l+ l-) where l = e, mu.
Measured fiducial cross-section ratio R_{W+/W-} = sigma (W+ -> l+ nu) / sigma (W- -> l- nubar) where l = e, mu.
Measured charge asymmetry in W-boson production A_{l} = ( sigma (W+ -> l+ nu) - sigma (W- -> l- nubar) ) / ( sigma (W+ -> l+ nu) + sigma (W- -> l- nubar) ) where l = e, mu.
The ratio of measured W+ cross-sections in the electron and muon decay channels R_{W+} = sigma (W+ -> e+ nu) / sigma (W+ -> mu+ nu)
The ratio of measured W- cross-sections in the electron and muon decay channels R_{W-} = sigma (W- -> e- nu) / sigma (W- -> mu- nu)
The ratio of measured W cross-sections in the electron and muon decay channels R_{W} = sigma (W -> e nu) / sigma (W -> mu nu)
The ratio of measured Z/gamma^* cross-sections in the electron and muon decay channels R_{Z/gamma^*} = sigma (Z/gamma^* -> e+ e-) / sigma (Z/gamma^* -> mu+ mu-)
Correlation coefficients among (W- -> l- nubar), (W+ -> l+ nu), (Z/gamma^* -> l+ l-) where (l = e, mu) excluding the common normalisation uncertainty due to the luminosity calibration.
This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton ($pp$) and proton-lead ($p$+Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb$^{-1}$ of $pp$ data and 360 $\mu \mathrm{b}^{-1}$ of $p$+Pb data, both at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the LHC. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between $-$4.0 and 4.0 using the two highest transverse momentum jets in each event, with the highest transverse momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in $p$+Pb compared to $pp$ collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in $p$+Pb collisions to those in $pp$ collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.
Unfolded azimuthal angular correlation distributions. Black markers represent p+Pb, red markers p+p
Unfolded width of azimuthal angular correlation distributions. Full markers represent p+Pb, open markers p+p
Unfolded Dijet conditional yields. Full markers represent p+Pb, open markers p+p
Ratio of unfolded width of azimuthal angular correlation distributions (P PB/ P P). Different colors correspond to different combinations of p_{T,1} and p_{T,2}
Ratio of unfolded Dijet conditional yields (P PB/ P P). Different colors correspond to different combinations of p_{T,1} and p_{T,2}
Unfolded width of azimuthal angular correlation distributions (Delta p_{T} > 3). Full markers represent p+Pb, open markers p+p
Unfolded Dijet conditional yields (Delta p_{T} > 3). Full markers represent p+Pb, open markers p+p
Ratio of unfolded width of azimuthal angular correlation distributions (P PB/ P P) (Delta p_{T} > 3). Different colors correspond to different combinations of p_{T,1} and p_{T,2}
Ratio of unfolded Dijet conditional yields (P PB/ P P) (Delta p_{T} > 3). Different colors correspond to different combinations of p_{T,1} and p_{T,2}
Unfolded azimuthal angular correlation distributions. Black markers represent p+Pb, red markers p+p
Unfolded azimuthal angular correlation distributions (Delta p_{T} > 3). Black markers represent p+Pb, red markers p+p
Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb$^{-1}$ of Pb+Pb collision data at $\sqrt{s_\mathrm{NN}}=5.02$ TeV and 25 pb$^{-1}$ of $pp$ collision data at $\sqrt{s}=5.02$ TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum $63.1 < p_\mathrm{T}^{\gamma} < 200$ GeV and $\left|\eta^{\gamma}\right| < 2.37$ are paired inclusively with all jets in the event that have $p_\mathrm{T}^\mathrm{jet} > 31.6$ GeV and pseudorapidity $\left|\eta^\mathrm{jet}\right| < 2.8$. The transverse momentum balance given by the jet-to-photon $p_\mathrm{T}$ ratio, $x_\mathrm{J\gamma}$, is measured for pairs with azimuthal opening angle $\Delta\phi > 7\pi/8$. Distributions of the per-photon jet yield as a function of $x_\mathrm{J\gamma}$, $(1/N_\gamma)(\mathrm{d}N/\mathrm{d}x_\mathrm{J\gamma})$, are corrected for detector effects via a two-dimensional unfolding procedure and reported at the particle level. In $pp$ collisions, the distributions are well described by Monte Carlo event generators. In Pb+Pb collisions, the $x_\mathrm{J\gamma}$ distribution is modified from that observed in $pp$ collisions with increasing centrality, consistent with the picture of parton energy loss in the hot nuclear medium. The data are compared with a suite of energy-loss models and calculations.
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V2{SP} over V2{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V3{SP} over V3{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V4{SP} over V4{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V5{SP} over V5{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V6{SP} over V6{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 50-55%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 50-55%
The PT scale factor for V2(PT) as a funtion of collision centrality
The PT scale factor for V3(PT) as a funtion of collision centrality
The V2 scale factor as a funtion of collision centrality
The V3 scale factor as a funtion of collision centrality
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The symmetric cumulant $sc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The asymmetric cumulant $ac_{2}\{3\}$results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The asymmetric cumulant $ac_{2}\{3\}$results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The asymmetric cumulant $ac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 13 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized symmetric cumulant $nsc_{2\,4}\{4\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The normalized asymmetric cumulant $nac_{2}\{3\}$ results as a function of multiplicity ($N_{ch}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The $v_{2}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{3}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The $v_{4}\{2\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The symmetric cumulant $ac_{2}\{3\}$ in p+Pb from different methods
The symmetric cumulant $ac_{2}\{3\}$ in pp from different methods
The symmetric cumulant $ac_{2}\{3\}$ in pp from different methods
Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.