None
No description provided.
No description provided.
No description provided.
The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
The differential cross section for the backward (120° ⩽ θ c.m.s. ⩽ 180°) pion-deuteron elastic scattering was measured at eight incident pion momenta from 0.90 to 2.025 GeV/ c . A distinctive change in the shape of the angular distribution is observed. At 0.9 GeV/ c the differential cross section decreases smoothly to 180° in accordance with predictions of multiple-scattering theory. At 1.31 GeV/ c , i.e. in the region of the hypothetical 1 I 6 dibaryon with a mass of 2.9 GeV, the differential cross section is practically independent of angle. At higher energies a sharp backward peak is clearly seen. Connections of our results with dibaryons and Regge asymptotic behaviour are discussed.
No description provided.
No description provided.
No description provided.
The pure QED reaction e + e − → γγ has been studied at centre of mass energies around the mass of the Z 0 boson using data recorded by the OPAL detector at LEP. The results are in good agreement with the QED prediction. Lower limits on the cutoff parameters of the modified electron propagator are found to be Λ + >89 GeV and Λ. The lower limit on the mass of an excited electron is 82 GeV assuming the coupling constant λ =1. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ are set at 3.7×10 −4 , 3.9×10 −4 and 5.8×10 −4 respectively. Two events from the reaction e + e − → γγγ have been observed, consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ is set at 2.8×10 −4 . All the limits are given at 95% confidence level.
No description provided.
Data read from graph.
None
No description provided.
None
No description provided.
No description provided.
None
No description provided.
Measurements of the differential cross section for π − d elastic scattering in the backward angular region (−1 ⩽ cos θ cms ⩽ −0.98) are presented. These measurements were made at nine incident pion momenta P π ranging from 1.75 to 3.09 GeV/ c and at the largest values of q 2 [up to 7 (GeV/ c ) 2 ] ever reached experimentally; here q 2 is the momentum transfer squared. The differential cross section was found to decrease rapidly with increasing momentum d σ d Ω cms (180°) ∼ P −15.7 π , d σ d t ∼ (q 2 ) −12.8 . The data are compared with predictions of Regge and quark bag models.
Statistical errors only.
We have measured the polarization parameter and differential cross sections in K+p elastic scattering from a polarized target from small |t| and small |u| at five momentum points: 1.7, 2.1, 2.4, 2.7, and 3.0 GeV/c. The polarized-proton target was butanol cooled at 0.5° by a He3-He4 refrigerator; a combination of multiwire proportional chambers and scintillation counters detected the scattered particles. The results for small |u| are discussed in the context of pure Regge-pole models with exchange-degenerate Λ trajectories.
No description provided.
The differential cross sections of π−p→γn at center-of-mass energy Ẽ=1363, 1337, and 1245 MeV are presented. The angular distributions are compared with recent γn→π−p experiments. Though the cross sections for π−p→γn are somewhat lower than those for the inverse reaction, when all uncertainties are considered, we find that our data are in acceptable agreement at all three energies with the inverse reaction determined from π−π+ ratio measurements, in support of time-reversal invariance. The agreement with bubble-chamber measurements at Ẽ=1363 and 1337 MeV is less satisfactory. The isotensor dip test applied to our data is inconclusive. Our measurements are compared with many multipole analyses, disagreeing with most, in particular with pure fixed- t dispersion relation calculations. We find no evidence, in the sense suggested by Donnachie, for the classification of the P11(1470) resonance in an SU(3) antidecuplet. The data are consistent with a small radiative decay of the P11(1470) resonance, as predicted by quark models.
Axis error includes +- 6/6 contribution.
Axis error includes +- 4.5/4.5 contribution.
Axis error includes +- 4.2/4.2 contribution.