Measurement of Differential Distributions of $B \to D^* \ell \bar \nu_\ell$ and Implications on $|V_{cb}|$

The Belle collaboration Prim, M.T. ; Bernlochner, F. ; Metzner, F. ; et al.
Phys.Rev.D 108 (2023) 012002, 2023.
Inspire Record 2624324 DOI 10.17182/hepdata.137767

We present a measurement of the differential shapes of exclusive $B\to D^* \ell \bar{\nu}_\ell$ ($B = B^-, \bar{B}^0 $ and $\ell = e, \mu$) decays with hadronic tag-side reconstruction for the full Belle data set of $711\,\mathrm{fb}^{-1}$ integrated luminosity. We extract the Caprini-Lellouch-Neubert (CLN) and Boyd-Grinstein-Lebed (BGL) form factor parameters and use an external input for the absolute branching fractions to determine the Cabibbo-Kobayashi-Maskawa matrix element and find $|V_{cb}|_\mathrm{CLN} = (40.1\pm0.9)\times 10^{-3}$ and $|V_{cb}|_\mathrm{BGL} = (40.6\pm 0.9)\times 10^{-3}$ with the zero-recoil lattice QCD point $\mathcal{F}(1) = 0.906 \pm 0.013$. We also perform a study of the impact of preliminary beyond zero-recoil lattice QCD calculations on the $|V_{cb}|$ determinations. Additionally, we present the lepton flavor universality ratio $R_{e\mu} = \mathcal{B}(B \to D^* e \bar{\nu}_e) / \mathcal{B}(B \to D^* \mu \bar{\nu}_\mu) = 0.990 \pm 0.021 \pm 0.023$, the electron and muon forward-backward asymmetry and their difference $\Delta A_{FB}=0.022\pm0.026\pm 0.007$, and the electron and muon $D^*$ longitudinal polarization fraction and their difference $\Delta F_L^{D^*} = 0.034 \pm 0.024 \pm 0.007$. The uncertainties quoted correspond to the statistical and systematic uncertainties, respectively.

0 data tables match query

Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

0 data tables match query

Study of $e^+ e^- \to \pi^+ \pi^- J/\psi$ and Observation of a Charged Charmonium-like State at Belle

The Belle collaboration Liu, Z.Q. ; Shen, C.P. ; Yuan, C.Z. ; et al.
Phys.Rev.Lett. 110 (2013) 252002, 2013.
Inspire Record 1225975 DOI 10.17182/hepdata.61431

The cross section for $e^+ e^- \to \pi^+ \pi^- J/\psi$ between 3.8 GeV and 5.5 GeV is measured with a 967 fb$^{-1}$ data sample collected by the Belle detector at or near the $\Upsilon(nS)$ ($n = 1,\ 2,\ ...,\ 5$) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of $\pi^+ \pi^- J/\psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parameterization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of $Y(4260) \to \pi^+ \pi^- J/\psi$ decays, a structure is observed in the $M(\pi^\pm\jpsi)$ mass spectrum with $5.2\sigma$ significance, with mass $M=(3894.5\pm 6.6\pm 4.5) {\rm MeV}/c^2$ and width $\Gamma=(63\pm 24\pm 26)$ MeV/$c^{2}$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmonium-like state.

0 data tables match query

Direct observation of the dead-cone effect in QCD

The ALICE collaboration Acharya, S. ; Acharya, S. ; Adamova, D. ; et al.
Nature 605 (2022) 440-446, 2022.
Inspire Record 1867966 DOI 10.17182/hepdata.130725

In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m_{\rm{Q}}$ and energy $E$, within a cone of angular size $m_{\rm{Q}}$/$E$ around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.

0 data tables match query

Cross-section and $p \bar{p}$ Invariant Mass Distribution of the Reaction $\gamma p \to p \bar{p} p$ at 4.7-{GeV} $\le e \gamma \le$ 6.6-{GeV}

Bodenkamp, J. ; Fries, D.C. ; Markou, A. ; et al.
Phys.Lett.B 133 (1983) 275-278, 1983.
Inspire Record 10564 DOI 10.17182/hepdata.30612

Cross section and pp¯ in variant mass distribution of the reaction γp→pp¯p are presented. Further evidence for a narrow pp¯ mass state at 2.023 GeV will be given.

0 data tables match query

Study of $\eta$ and $\eta'$ photoproduction at MAMI

The A2 collaboration Kashevarov, V.L. ; Ott, P. ; Prakhov, S. ; et al.
Phys.Rev.Lett. 118 (2017) 212001, 2017.
Inspire Record 1509373 DOI 10.17182/hepdata.116258

The reactions $\gamma p\to \eta p$ and $\gamma p\to \eta' p$ have been measured from their thresholds up to the center-of-mass energy $W=1.96$GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections were obtained with unprecedented accuracy, providing fine energy binning and full production-angle coverage. A strong cusp is observed in the total cross section and excitation functions for $\eta$ photoproduction at the energies in vicinity of the $\eta'$ threshold, $W=1896$MeV ($E_\gamma=1447$MeV). This behavior is explained in a revised $\eta$MAID isobar model by a significant branching of the $N(1895)1/2^-$ nucleon resonance to both, $\eta p$ and $\eta' p$, confirming the existence and constraining the properties of this poorly known state.

0 data tables match query

Measurement of the B+ total cross-section and B+ differential cross-section d sigma / dp(T) in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 052005, 2002.
Inspire Record 567345 DOI 10.17182/hepdata.42889

We present measurements of the B+ meson total cross section and differential cross section $d\sigma/ dp_T$. The measurements use a $98\pm 4$ pb^{-1} sample of $p \bar p$ collisions at $\sqrt{s}=1.8$ TeV collected by the CDF detector. Charged $B$ meson candidates are reconstructed through the decay $B^{\pm} \to J/\psi K^{\pm}$ with $J/\psi\to \mu^+ \mu^-$. The total cross section, measured in the central rapidity region $|y|<1.0$ for $p_T(B)>6.0$ GeV/$c$, is $3.6 \pm 0.6 ({\rm stat} \oplus {\rm syst)} \mu$b. The measured differential cross section is substantially larger than typical QCD predictions calculated to next-to-leading order.

1 data table match query

Measured differential cross section for B+ production. The first (DSYS) error is the PT dependent systematic error and the second is the full correlated systematic error.


A glimpse of gluons through deeply virtual compton scattering on the proton

Defurne, M. ; Martí Jiménez-Argüello, A. ; Ahmed, Z. ; et al.
Nature Commun. 8 (2017) 1408, 2017.
Inspire Record 1519829 DOI 10.17182/hepdata.78261

The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process, in which the final photon is emitted by the electron rather than the proton. We report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.

1 data table match query

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.


Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

1 data table match query

Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions from Lattice QCD Calculations.


ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 106, 2024.
Inspire Record 2755168 DOI 10.17182/hepdata.149493

A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb$^{-1}$ of proton-proton data at a centre-of-mass energy of $\sqrt{s}$=13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson `funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.

0 data tables match query