A new measurement of the total e + e − → hadrons cross-section in the centre of mass energy range 1.8-2.5 GeV, performed by the FENICE experiment at the Frascati e + e − storage ring ADONE, is presented. The behaviour of the total cross section together with the proton electromagnetic time-like form factor is discussed in terms of a narrow vector resonance close to the nucleon-antinucleon threshold.
Only statistical errors are quoted.
Cross sections for J ψ,ψ′ and Drell-Yan production in Pb+Pb collisions at 158×A GeV/c are presented and compared with results obtained by the NA38 and NA51 collaborations. The Pb+Pb data have been collected by the NA50 collaboration using the NA38 dimuon spectrometer. The Drell-Yan mechanism is found to scale as (A projectile · B target ) in p+B target and A projectile + B target collisions including Pb+Pb collisions. Regarding J ψ , an anomalous suppression is observed in Pb+Pb collisions with respect to the suppression observed in p+B target , O+B target and S+U collisions. The cross section ratios ψ′ ( J ψ ) are similar in Pb+Pb and S+U collisions.
No description provided.
No description provided.
Preliminary inclusive spectra of negative hadrons, net protons and neutral strange particles are presented, measured by the NA49 experiment in central Pb+Pb collisions at 158 GeV per nucleon. Comparison of their yields with those from the lighter S+S system suggests that the yields scale approximately with the number of participating nucleons.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).
No description provided.
Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Here UNSPEC is invisible particle.
Proton distributions at midrapidity have been measured for 158A·GeV Pb+Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A·GeV S+S and 158A·GeV Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter T fo and mean collective flow velocity 〈β〉 are extracted. Preliminary results of the particle ratios of K − K + and p p are discussed in the context of cascade models of RQMD and VENUS.
CENTRAL COLLISIONS: SIG(TRIG)/SIG(GEOM)=10%.
Preliminary results from WA97 measurements on Λ, Ξ and Ω production in lead-lead and proton-lead collisions are presented, along with a comparison of WA97 proton-lead data with previous WA85 proton-tungsten results. The ratio Ω gX seems to be enhanced in lead initiated reactions compared to proton initiated reactions.
No description provided.
No description provided.
PRELIMINARI DATA.
None
No description provided.
The reactione+p →> e+π++n at c.m. energyW=1125MeV and momentum transfer Q2=0.117GeV2/c2 has been measured. The transverse and longitudinal structure functions have been separated by varying the polarization of the virtual photon (Rosenbluth plot) with a 3 to 4% error. In addition the longitudinal-transverse interference term has been determined measuring the right-left asymmetry with an accuracy of 3%. The experimental data are compared to model calculations, and the sensitivity of the results to the axial and pion formfactors is discussed.
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Statistical error only.
No description provided.
No description provided.
From the data collected by DELPHI at LEP in autumn 1995, the multiplicity of charged particles at a hadronic energy of 130 GeV has been measured to be 〈 n ch 〉 = 23.84 ± 0.51 (stat) ± 0.52 (syst). When compared to lower energy data, the value measured is consistent with the evolution predicted by QCD with corrections at next-to-leading order, for a value α s (130 GeV) = 0.105 ± 0.003 (stat) ± 0.008 (syst).
No description provided.