The differential cross section for neutron-proton elastic scattering was measured in the diffraction region with incident neutron momenta between 5 and 30 GeV/ c . The experiment was an optical-spark-chamber-counter experiment conducted at the Brookhaven National Laboratory alternating gradient synchrotron. A well collimated neutron beam with a broad energy spectrum was incident on a liquid hydrogen target. The scattered neutrons were detected in a thick-plate spark-chamber array while the recoil protons were detected and momentum analyzed in a magnetic spectrometer with thin-foil spark chambers.
No description provided.
No description provided.
No description provided.
None
Only statistical errors are given.
Only statistical errors are given.
Results of a spark chamber experiment on elastic scattering of pions on protons are presented and analyzed. The processes studied were π+p at 2.92 GeV/c, and π−p at 3.15, 4.13, and 4.95 GeV/c. The data are fitted to an exponential function of the four-momentum transfer, t, in several different ways in attempts to explore systematic energy and angular dependences. No shrinkage of the diffraction peak is seen in comparing the coefficients of a linear exponential fit for |t|<0.4 (GeV/c)2; at larger |t|, however, the cross section falls off with increasing energy. The large-angle differential cross section is examined for structure and is compared with all other large angle scattering data. The results are compared with proton-proton scattering data over the same energy range and substantial differences between the two processes are evident.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.