Elastic scattering of linearly polarized photons on protons has been measured between 3.2 and 3.7 GeV for four-momentum transfers ranging from −0.1 to −0.7 (GeV/ c ) 2 . The observed cross section asymmetry in this range is consistent with zero within ±0.05.
No description provided.
Proton Compton scattering has been measured in a coincidence experiment at photon energies between 2.2 and 7 GeV and four-momentum transfers t between −0.06 and −0.85(GeV/ c ) 2 . For ∣ t ∣ ⩽ 0.4 (GeV/ c ) 2 fits of the form d σ /d t = ( A · exp( Bt )) yield forward cross sections A in good agreement with the values calculated from the total hadronic γ p cross section via the optical theorem and the forward dispersion relation. The slopes B do not show a significant energy dependence, the mean value being 5.7 ± 0.4 (GeV/ c ) −2 . The cross section is substantially larger than predicted by the vector-meson dominance model.
No description provided.
No description provided.
No description provided.
We have measured elastic scattering of 5 and 6 GeV photons on hydrogen and deuterium in the angular range 10–50 mrad. On hydrogen we observe a forward diffraction peak with a slope of 8.5 (GeV/ c ) −2 . The extrapolated forward cross sections in units μ b/(GeV/ c ) 2 are 0.82 ± 0.04 at 5 GeV and 0.79 ± 0.04 at 6 GeV. They are consistent with the calculated amplitudes obtained from total cross section measurements via the optical theorem and dispersion relations assuming negligible contributions of spin-dependent amplitudes. Deuterium cross sections show a transition from coherent scattering at low | t | to incoherent scattering at higher | t |. They indicate that the isovector exchange amplitude a 1 is very small compared to the isoscalar a 0 . We obtain |a 1 | 2 /|a 0 +a 1 | 2 =0.13±0.09 , Re (a 0 a ∗ 1 )/|a 0 +a 1 | 2 =0.0±0.03, at 5 GeV , |a 1 | 2 /|a 0 +a 1 | 2 =−0.12±0.15 , Re (a 0 a ∗ 1 )/|a 0 +a 1 | 2 =0.10±0.04, at 6 GeV .
No description provided.
No description provided.
Photons of 3 GeV and 5 GeV were scattered on 7 different elements, ranging from Be to Au, and detected with a pair spectrometer. The angular distributions show diffractive patterns consistent with known nuclear sizes. Forward cross sections are 20–30% lower than expected from an A 2 dependence. This shadowing effect is qualitatively explained by photon interactions via intermediate hadronic states.
SYS ERR = 3.01 PCT, NORM ERR = 1.63 PCT.
SYS ERR = 2.94 PCT, NORM ERR = 1.60 PCT.
SYS ERR = 5.58 PCT, NORM ERR = 1.61 PCT.
The differential cross section of the reactione+e−→e+e− at a c.m. energy of 34.7 GeV has been measured. The result, together with our previously measurede+e−→α+α− data, are compared with the standard model predictions. We obtain for the weak neutral current couplings the valuesgv2=0.09×0.06,ga2=0.38×0.08. A fit of the Weinberg mixing angle gives the valuegv2=0.09×0.06,ga2=0.038×0.08. The data are also used to set limits on possible deviations from the pointlike structure of leptons. An upper limit for thee+e− coupling to a heavy spin 0 boson is also given.
Fully corrected results for Bhabha scattering.
Compton scattering on protons has been measured at a mean photon energy of 6 GeV and four-momentum transfers − t between 0.06 and 0.60 (GeV/ c ) 2 . The differential cross section shows a diffraction-like behaviour. The cross section extrapolated to t =0 is in fair agreement with the optical point. Discrepancies with the vector meson dominance model are pointed out.
No description provided.
None
No description provided.
No description provided.
The differential cross sections for Bhabha scattering and μ pair production, and the total τ pair cross section as measured by the PLUTO detector at PETRA, have been analyzed to extract information on the weak interaction of leptons. The data are compared with unified gauge theories. Since the observed electroweak effects are still consistent with zero (within errors) we can set experimental limits on neutral current parameters atQ2 values of 950 GeV2. In the framework of the standard SU(2)×U(1) model we find sin2Θw<0.52(95% c.l.). In the context of general singleZo models we can excludeZo masses of less than 40 GeV.
No description provided.
We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.
No description provided.
Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.
A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.
Data for proton remaining intact.
Data for proton dissociating.