The results of two sets of transverse energy measurements, performed with incident proton beams of 200 and 450 GeV/c momentum on several nuclear targets, are presented. The transverse energy cross sections dσ/dET are measured in a pseudorapidity range including the target fragmentation region (−0.1<η<2.9) for both data sets and also in a nearly complete pseudorapidity coverage (−0.1<η<5.5) for the data taken at 200 GeV/c incident momentum. A comparison is made of the transverse energy distributions in the target fragmentation region and in the full η region. We find that the mean value of pseudorapidity of the dET/dη distributions shifts towards the target fragmentation region as the atomic mass number of the target increases or a selection of high transverse energy events is made. A parametrization based on a simple geometrical nucleonnucleon scattering approach was found to be inadequate to describe all features of the transverse energy distributions. Finally, the VENUS model is compared with the experimental data.
No description provided.
No description provided.
No description provided.
We report on the interactions of an incident 200 GeV / c beam composed of 33% protons, 16% kaons, and 48% pions on targets of silver and gold mounted in the Fermilab 30″ bubble chamber. Within our limited statistics, we find the total cross sections and average multiplicities to agree with previously published data. We find the KNO scaling distribution curve to be broader for heavy nuclei than for hydrogen. We present the first data for V 0 production on gold and silver. We also present, for the first time, evidence for a positive charge excess among the sample of relativistic tracks from interactions on gold and silver. We observe a trend where the positive charge excess increases with target atomic number and with increasing charged particle multiplicity. We find the charge excess to exist among the sample of particles having greater than 2 GeV / c momentum and to persist in the sample with momentum greater than 4 GeV / c .
SIG REFERS PRODUCTION OF 2 OR MORE CHARGED PARTICLES EXCLUDING ELASTICS BUT INCLUDING COHERENT PRODUCTION. MULT REFERS TO RELATIVISTIC SECONDARIES (BETA > 0.7).
NO CORRECTION FOR GAMMA CONVERSIONS IN THE TARGET IN THIS TABLE BUT DIFFERENCE DOES NOT NEED CORRECTION.
No description provided.