Polarization of Λ hyperons and differential cross sections for the reaction γ+p→K++Λ were measured at the K+-meson center-of-mass angles around 45°, 70°, and 90° for the incident photon energies of 1054, 1100, and 1160 MeV. The K+ mesons were detected with a magnetic spectrometer and a velocity-selection system based on the energy loss and the time of flight. The polarization of Λ was determined by measuring the up-down asymmetry of protons in the decay Λ→pπ− with respect to the production plane. The results show a dominant sinθK* dependence of the polarization at the region of the third resonance and are consistent with a contribution of the P11 resonance with a mass of about 1700 MeV.
No description provided.
No description provided.
No description provided.
The π−p elastic scattering differential cross section has been obtained at 18 incident momenta from 1.71 to 5.53 GeV/c. The measurements were taken over a limited range of squared four-momentum transfer t near the forward direction. The statistical accuracy and resolution of these data are comparable to, or better than, existing data. The parameter b in the expression dσdt=Aebt has been determined at each of our incident momenta, and a large (∼25%) enhancement in b as a function of momentum is observed at a c.m. energy of ∼2290 MeV. The relation of this bump in b with the well-established bump in the total π−p cross section at ∼2200 MeV is discussed.
No description provided.
No description provided.
No description provided.
The cross section for single π0 photoproduction from hydrogen has been measured at nominal angles of 70°, 90°, 130°, and 180° for photon energies 220-400 MeV by detecting the recoil protons. The 180° measurements, taken with a new setup, avoid big corrections present in some of the previously published results. These new data allow a direct comparison with the experiment presented by the Bonn group and with the most recent theoretical predictions.
No description provided.
Total and differenial cross sections of the reaction γ +n→p+ π − have been determined for photon-energies between 0.2 and 2.0 GGeV. Below 500 MeV the differential cross sections are compared with theoretical predictions derived from fixed-momentum-transfer dispersion relations.
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Results are presented from an experiment in which high-energy deuterons, produced by proton-proton interactions at 21.1 GeV/ c incident momentum, were detected over a range of angles from 12.5 mrad to 60 mrad in the laboratory system. From the momentum spectra of the deuterons, the final states D + π + and D + ϱ + have been identified. The angular distribution for these reactions are presented and compared with previous data at lower energies.
The statistical errors are presented.
The statistical errors are presented.
The statistical errors are presented. The data are from previous publications.
Differential cross sections for the elastic scattering of negative pions from hydrogen have been measured over a limited range of squared four-momentum transfer (t) in the vicinity of t≃−3 (GeV/c)2 for incident pion momenta of 2.51, 2.76, and 3.01 GeV/c. These measurements confirm the existence of a minimum in the differential cross section in this region of incident momentum and scattering angle. The minimum occurs at a smaller value of t [t≃−2.6 (GeV/c)2] than has been observed at higher momenta.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
The π0 photoproduction cross section has been measured at 180° for photon energies from 220 to 380 MeV, in steps of 20 MeV, by detecting the recoil proton at 0°. The statistical accuracy of the measurements varies between 3 and 7%, depending on the energy. Absolute cross sections have been deduced from a comparison of the measurements with electron-proton scattering. The experimental data are compared with theoretical results calculated from fixed-momentum-transfer dispersion relations. Special attention is paid to the prediction of the multipoles at the first resonance, namely, E1+32, M1+32, and E0+π0 to obtain agreement with experiment.
No description provided.
Cross sections for the photoproduction of neutral pions have been measured at the 1.1-GeV Frascati electron synchrotron for bombarding photon energies k between 400 and 800 MeV and for π0 c.m. angles of θπ*=90∘, 120∘, and 135∘. The main feature of the experiment is good resolution in incident photon energy. The results are in good agreement with the existing theories in the energy range of 450 to 550 MeV. The cross sections exhibit a smooth behavior as a function of energy for k=400−600 MeV. No immediate evidence is found of a contribution of the P11 resonance. An anomaly at the limit of statistical significance appears for k≃700−740 MeV, indicating a possible structure of the so-called second resonance. We attempt to interpret the observed anomaly as a reflection of the sharp opening of the η production channel (η cusp effect).
No description provided.