$J/\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV in STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 739 (2014) 180-188, 2014.
Inspire Record 1263695 DOI 10.17182/hepdata.96232

We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $\sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/\psi$ polarization measurement should help to distinguish between different models of the $J/\psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/\psi$ polarization. In this analysis, $J/\psi$ polarization is studied in the helicity frame. The polarization parameter $\lambda_{\theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/\psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.

13 data tables

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $2 < p_{T}^{J/\psi} < 3$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $3 < p_{T}^{J/\psi} < 4$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $4 < p_{T}^{J/\psi} < 6$ GeV/c

More…

Measurement of charged jet suppression n Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
JHEP 03 (2014) 013, 2014.
Inspire Record 1263194 DOI 10.17182/hepdata.62723

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.

30 data tables

Average values of the number of participating nucleons (Npart), number of binary collisions (Ncoll), and the nuclear overlap function (TAA) for the centrality intervals used in the jet analysis.

Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 0-10%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.

Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 10-30%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.

More…

$J/\psi$ production at low $p_T$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 90 (2014) 024906, 2014.
Inspire Record 1258446 DOI 10.17182/hepdata.99158

The $\jpsi$ $\pt$ spectrum and nuclear modification factor ($\raa$) are reported for $\pt < 5 \ \gevc$ and $|y|<1$ from 0\% to 60\% central Au+Au and Cu+Cu collisions at $\snn = 200 \ \gev$ at STAR. A significant suppression of $\pt$-integrated $\jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $\raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $\pt$. The data are compared to high-$\pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $\pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

11 data tables

The invariant yield versus transverse momentum for |y| < 1 in 0-20% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

The invariant yield versus transverse momentum for |y| < 1 in 20-40% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

The invariant yield versus transverse momentum for |y| < 1 in 40-60% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 89 (2014) 012001, 2014.
Inspire Record 1253360 DOI 10.17182/hepdata.103061

The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < {\eta} < 2.0 in polarized proton-proton collisions at sqrt{s} = 200 GeV are presented. Neutral pions were detected using the endcap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p_T < 16 GeV/c and is found to be within the scale uncertainty of a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry, A_LL, is measured in the same pseudorapidity range. This quantity is sensitive to the gluonic contribution to the proton spin, {\Delta}g(x), at low Bjorken-x (down to x approx 0.01), where it is less constrained by measurements at central pseudorapidity. The measured A_LL is consistent with model predictions. The parity-violating asymmetry, A_L, is also measured and found to be consistent with zero. The transverse single-spin asymmetry, A_N, is measured within a previously unexplored kinematic range in Feynman-x and p_T. Such measurements may aid our understanding of the on-set and kinematic dependence of the large asymmetries observed at more forward pseudorapidity ({\eta} approx 3) and their underlying mechanisms. The A_N results presented are consistent with a twist-3 model prediction of a small asymmetry within the present kinematic range.

16 data tables

Distributions of x1 and x2 in two different bins of reconstructed $\pi^{0}$ pT for events at $\sqrt{s}$ = 200 GeV over 0.8 < $\eta$ < 2.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

More…

Production of charged pions, kaons and protons in e+e- annihilations into hadrons at sqrt{s} = 10.54 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 88 (2013) 032011, 2013.
Inspire Record 1238276 DOI 10.17182/hepdata.62088

Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.

4 data tables

Differential cross section for prompt PI+-, K+- and PBAR/P production.

Differential cross section for conventional PI+-, K+- and PBAR/P production.

Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.

More…

Differential Photoproduction Cross Sections of the $\Sigma^0(1385)$, $\Lambda(1405)$, and $\Lambda(1520)$

The CLAS collaboration Moriya, K. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 88 (2013) 045201, 2013.
Inspire Record 1236062 DOI 10.17182/hepdata.61410

We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for the Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.

10 data tables
More…

D meson elliptic flow in non-central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Rev.Lett. 111 (2013) 102301, 2013.
Inspire Record 1233087 DOI 10.17182/hepdata.61916

Azimuthally anisotropic distributions of D$^0$, D$^+$ and D$^{*+}$ mesons were studied in the central rapidity region ($|y|<0.8$) in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient $v_2$ (commonly denoted elliptic flow) was measured in the centrality class 30-50% as a function of the D meson transverse momentum $p_{\rm T}$, in the range 2-16 GeV/$c$. The measured $v_2$ of D mesons is comparable in magnitude to that of light-flavour hadrons. It is positive in the range $2 < p_{\rm T} < 6$ GeV/$c$ with $5.7\sigma$ significance, based on the combination of statistical and systematic uncertainties.

4 data tables

v2 vs. pt for D0. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.

v2 vs. pt for D+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.

v2 vs. pt for D*+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.

More…

Mid-rapidity anti-baryon to baryon ratios in pp collisions at sqrt(s) = 0.9, 2.76 and 7 TeV measured by ALICE

The ALICE collaboration Abbas, E. ; Abelev, B. ; Adam, J. ; et al.
Eur.Phys.J.C 73 (2013) 2496, 2013.
Inspire Record 1232209 DOI 10.17182/hepdata.61965

The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.

20 data tables

The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.

The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.

The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.

More…

Measurement of Charge Multiplicity Asymmetry Correlations in High Energy Nucleus-Nucleus Collisions at 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 89 (2014) 044908, 2014.
Inspire Record 1222542 DOI 10.17182/hepdata.100169

A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.

43 data tables

Centrality dependences of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR). The asymmetry correlations are multiplied by the number of participants $N_{part}$. The upper (lower) shaded band shows half of the systematic uncertainty in the $\delta\langle A_{+}A_{-}\rangle$ ($\delta\langle A^{2}\rangle$); the larger of the UD\ and LR\ systematic uncertainties is drawn. The stars and triangles depict the $d$+Au results.

The correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{ UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$, scaled by the number of participants $N_{part}$, as a function of $N_{part}$. The error bars are statistical, and the systematic uncertainties are shown in the shaded bands (upper band for $\Delta\langle A_{+}A_{-}\rangle$ and lower band for $\Delta\langle A^{2}\rangle$). Also shown as the lines are the linear-extrapolated values of $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ corresponding to a perfect event-plane resolution. The star and triangle depict the $d$+Au results.

The $p_{T}$ dependence of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The data are from 20-40% central Au+Au collisions. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR).

More…