Measurement was made of dσdt for n↑+p↑→n+p at P⊥2=0.8 and 1.0 (GeV/c)2 at 6 GeV/c. The 6-GeV/c 53%-polarized neutrons from the 12-GeV/c polarized deuteron beam at the Argonne zero-gradient synchroton were scattered from our 75%-polarized proton target. Both spins were oriented perpendicular to the scattering plane. We found large unexpected spin-spin effects in n−p elastic scattering which are quite different from the p−p spin-spin effects.
No description provided.
We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.
No description provided.
The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.
.
.
.
We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.
THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).
None
No description provided.
No description provided.
No description provided.
None
No description provided.
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
Total cross section for inelastic diffraction.
A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.
Data for proton remaining intact.
Data for proton dissociating.