The reaction p + d → π − + X has been studied at Saturne at 1.45, 2.10 and 2.70 GeV, using the spectrometer SPES III. The analysing power and the differential cross sections show no evidence for narrow structures which could be interpreted as a resonance in the three baryon system. At the lowest incident energy, the shapes of the experimental cross sections are well reproduced by phase-space distributions.
Axis error includes +- 0.0/0.0 contribution (?////).
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The production ofπ0 andη mesons has been studied in the reactions20Ne +Al at 350 MeV/u and40Ar + Ca at 1.0 GeV/u. Rapidity distributions and transverse momentum spectra have been measured and are compared to thermal distributions.
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
We are reporting an improved determination of the electroweak mixing angle sin 2 Θ w from the ratio of ν μ e to ν μ e scattering cross sections. The CHARM II detector was exposed to neutrino and antineutrino wide band beams at the 450 GeV CERN SPS. Including new data collected in 1989 we have obtained 1316 ± 56 ν μ e and 1453 ± 62 ν μ e events. From the ratio of the visible cross sections we determined sin 2 Θ 0 =0.239 ± 0.009(stat) ± 0.007(syst) without radiative corrections and g V e g A e =0.047 ± 0.046 . Combining this last result with recent results on g A e at LEP we obtain g V e = −0.023 ± 0.023.
Systematic error presented includes error from flux normalization 'F'=1.030+- 0.022, no detaled description of the other sources and of the combination pr ocedure.. 'F'.
Without radiative corrections, systematic error combined in quadrature fromconponents listed under SYSTEMATICS.
With radiative corrections as defined by Marciano-Sirlin scheme, see Phys.Rev.D22(1980)2695, Phys.Rev.Lett.46(1981)163, Phys.Rev.D29(1984)945, Phys.Rev.D31(1985)213E, Nucl.Phys.B217(1983)84. CENTRAL VALUE IS FOR M(TOP)=100 GEV, M(HIGGS)=100 GEV.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.
No description provided.
The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We report on a systematic study of midrapidity transverse energy production and forward energy flow in interactions of16O and32S projectiles with S, Cu, Ag and Au targets at 60 and 200 GeV/nucleon. The variation of the shape of theET distributions with target and projectile mass can be understood from collision geometry. AverageET values determined for central collisions show an increasing stopping power for heavier target nuclei. A higher relative stopping is observed at 60 GeV/nucleon than at 200 GeV/nucleon. Bjorken estimates of the energy density reach approximately 3 GeV/fm3 in highET events at 200 GeV/nucleon with16O and32S projectiles. The systematics of the data and the shapes ofET and pseudorapidity distributions are well described by the Lund model Fritiof.
No description provided.
No description provided.
No description provided.