This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.
Signal region detector-level distribution for the observable $|y_{e\mu}|$.
Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.
Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.
The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.
The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.
The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. The uncertainty is defined as Max(stat error, systematic difference between Sherpa LO and Sherpa 2.2.2 NLO), and cannot be considered correlated bin-to-bin. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.
The measured fiducial cross section vs $|\eta^\gamma|$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. The uncertainty is defined as Max(stat error, systematic difference between Sherpa LO and Sherpa 2.2.2 NLO), and cannot be considered correlated bin-to-bin. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.
The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- -> e+e-mu+mu-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function F_2^gamma and the differential cross-section dsigdx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q**2 ranging from 1.5 to 400 GeV**2. The differential cross-section dsigdx for highly virtual photons is measured for 1.5< Q**2 < 30 GeV**2 and 1.5< P**2 < 20 GeV**2, where Q**2 and P**2 are the negative values of the four-momentum squared of the two photons such that Q**2 > P**2. Based on azimuthal correlations the QED structure functions F_A^gamma and F_B^gamma for quasi-real photons are determined for an average Q**2 of 5.4 GeV**2.
No description provided.
No description provided.
No description provided.
Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.
Fragmentation function for 'uds-quark' events.
Fragmentation function for 'c-quark' events.
Fragmentation function for 'b-quark' events.
The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the \pi^0, \eta, \rho(770)+-, \omega(782), \eta'(958) and a_0(980)+-. The particle multiplicities per hadronic Z^0 decay, extrapolated to the full energy range, are: <n_\gamma> = 20.97 +/- 0.02 +/- 1.15, <n_\pi^0> = 9.55 +/- 0.06 +/- 0.75, <n_\eta> = 0.97 +/- 0.03 +/- 0.11, <n_\rho^+-> = 2.40 +/- 0.06 +/- 0.43, <n_\omega> = 1.04 +/- 0.04 +/- 0.14, <n_\eta> = 0.14 +/- 0.01 +/- 0.02, <n_a_0+-> = 0.27 +/- 0.04 +/- 0.10. where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.
Particle multiplicities per hadronic decay extrapolated to the full energy range.
Photon fragmentation function.
Photon fragmentation function.
Inclusive production of the f_0(980), f_2(1270) and \phi(1020) resonances has been studied in a sample of 4.3 million hadronic Z^0 decays from the OPAL experiment at LEP. A coupled channel analysis has been used for the f_0 in simultaneous fits to the resonances in inclusive \pi+\pi- and K+K- mass spectra. Fragmentation functions are reported for the three states. Total inclusive rates are measured to be 0.141 +/- 0.007 +/- 0.011 f_0, 0.155 +/- 0.011 +/- 0.018 f_2, and 0.091 +/- 0.002 +/- 0.003 \phi mesons per hadronic Z^0 decay. The production properties of the f_0, including those in three-jet events, are compared with those of the f_2 and \phi, and with the Lund string model of hadron production. All measurements are consistent with the hypothesis that the f_0 is a conventional qq(bar) scalar meson.
Total inclusive production rates.
Fragmentation functions. Additional systematic errors of 7.6 PCT for F0, 11.6 PCT for F2 and 3.5 PCT for PHI. The uncorrelated systematic errors for F0 and F2 are negligible in comparison to the other errors.
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.
Inclusive K*= cross section.
Helicity density matrices elemnts.
Ratios of helicity density matrices elements.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
The production of the $J^{P}={1⩈er 2}^{+}$ octet baryons Λ and Ξ−, the $J^{P}={3⩈er 2}^{+}$ decuplet baryons Σ(1385)±Ξ(1530)0, and Ω−, and the $J^{P}={3⩈er 2}^{-}$ orbitally excited state Λ(1520) has been measured in a sample of approximately 3.65 million hadronic Z0 decays. The integrated rates and the differential cross-sections as a function of xE, the scaled energy, are determined. The differential cross-sections of the Λ and Ξ− baryons are found to be softer than those predicted by both the JETSET and HERWIG Monte Carlo generators. The measured baryon yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is allowed. The yields are further compared with a thermodynamic model of hadron production which includes the production of orbitally excited mesons and baryons. The momentum spectra of Λ, Ξ−, Σ(1385)±Ξ(1530)0, and Λ(1520) are also compared to the predictions of an analytical QCD formula.
Differential cross section for LAMBDA production.
(1/LN(X)) distribution for LAMBDA production.
Differential cross section for XI- production.
The production rates of the $J_{P}={1⩈er 2}^{+}$ octet Σ baryons in hadronic Z0 decays have been measured using the OPAL detector at LEP. The inclusive production rates per hadronic Z0 decay of the three isospin states (including the respective antiparticle) have been separately measured for the first time: $άtrix {n_{Sigma^{+}}=0.099pm 0.008pm 0.013ŗ n_{Sigma^{0}}=0.071pm 0.012pm 0.013ŗ n_{Sigma^{-}}=0.083pm 0.006pm 0.009ŗ}$ where the first error is statistical and the second is systematic. Differential cross-sections are also presented for the Σ+ and Σ− and compared with JETSET and HERWIG predictions. Assuming full isospin symmetry, the average inclusive rate is: ${1⩈er 3}[n_{Sigma^{+}+Sigma^{0}+Sigma^{-}}]=0.084pm 0.005 ({⤪ stat.}) pm 0.008 ({⤪ syst.})$.
Differential cross section for SIGMA+ production.
Differential cross section for SIGMA- production.
No description provided.