A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.
No description provided.
Data are given for the polarization parameter and for the differential cross section in pp elastic scattering at 200 GeV/ c , in the range 0.5 ⪕−t ⪕ 4.0 GeV 2 . The polarization changes sign in the dip region, as already observed at 150 GeV/ c .
No description provided.
No description provided.
None
'1'. '2'. '3'.
No description provided.
We discuss how the spatial intermittency of energy dissipation in 3D fully developed turbulence affects the small-scale statistics of passive scalars. We relate the passive-scalar behaviour to the diffusion properties of particle pairs in turbulent fluids. We thus find the intermittency correction to the -5/3 Obukhov-Corrsin law for the power spectrum of a passive scalar at wavenumber k where molecular diffusion and viscosity play a negligible role (inertial convective subrange). This correction is positive at difference with the negative correction to the -5/3 Kolmogorov law for the energy spectrum. We finally show that the structure functions of passive scalars have scaling exponents linear in the moment order, even in the framework of multifractal models.
'2'.
The coherent elastic reaction K + d → K + d and the break-up reaction K + d → K + pn are studied in a K + d experiment at 4.6 GeV/ c which the CERN 2 m bubble chamber. Partial and differential cross sections are given and the slopes of the differential cross sections are determined. The results for the reaction K + d → K + p(n s ), where n s denotes the spectator neutron, are compared with those of the reaction K + p → K + p on free protons. Combining our data with existing data on the reactions K + d → K 0 pp and K + p → K + p, parameters of the elastic K + -nucleon scattering at 4.6 GeV/ c are determined in the framework of the Glauber model. The D-wave of the deuteron and spin-flip effects are taken into account.
No description provided.
No description provided.
The absolute luminosity of the CERN Intersecting Storage Rings has been determined by the Van der Meer method. Combining the measurement with small angle proton-proton elastic events, we find σ elastic = (6.8±0.6)mb.
No description provided.
In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.
The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.
The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.
The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.
Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number n ch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is 〈 n ch 〉 = 10.26±0.15. For n ch ⩾8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.
No description provided.
K + p elastic scattering has been measured over nearly the whole angular range at an incident momentum of 10 GeV/ c . The differential cross-section is found to decrease smoothly in the forward direction to - t ≈ 2 (GeV/ c ) 2 , where there is a change in slope, followed by a further decrease to - t ≈ 6 (GeV/ c ) 2 . Around 90° c.m. the cross-section is approximately 1 nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c . The backward peak has no structure.
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
The small-angle elastic scattering for pp at s=23.5, 30.7, and 52.8 GeV and for p¯p at s=52.8 GeV are measured. The data are normalized on Coulomb scattering. Using the optical theorem and the best estimate of the real part of the forward scattering amplitude, ρ(pp¯)=0.1, we obtain σtot(p¯p)=44.1±2.9 mb for the total cross section and b(p¯p)=13.6±2.2 GeV−2 for the nuclear slope parameter. This supports the dispersion relation prediction that σtot(p¯p) will start to rise above Elab≈200 GeV.
No description provided.