Invariant mass distributions for the pp to p p eta reaction at Q=10 MeV

Moskal, P. ; Czyżykiewicz, R. ; Czerwiński, E. ; et al.
Eur.Phys.J.A 43 (2010) 131-136, 2010.
Inspire Record 839339 DOI 10.17182/hepdata.54192

Proton-proton and proton-eta invariant mass distributions and the total cross section for the pp to pp eta reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q= 40MeV.

3 data tables

Total cross section determined from the integral of the invariant mass distribution.

Distribution of the square of the invariant mass of the proton-proton system.

Distribution of the square of the invariant mass of the proton-eta system.


Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt{s} = 7 TeV with the TOTEM experiment

The TOTEM collaboration Antchev, G ; Atanassov, I. ; Avati, V. ; et al.
EPL 98 (2012) 31002, 2012.
Inspire Record 1115294 DOI 10.17182/hepdata.59403

The TOTEM experiment has measured the charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV for 5.3<|eta|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward eta region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ~3.4 GeV/c^2, corresponding to about 95% of the total inelastic cross-section. The dN_{ch}/deta has been found to decrease with |eta|, from 3.84 pm 0.01(stat) pm 0.37(syst) at |eta| = 5.375 to 2.38 pm 0.01(stat) pm 0.21(syst) at |eta| = 6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.

1 data table

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7 TeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >40 MeV and 5.3< absolute(pseudorapidity) <6.5.


Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 95 (2011) 41001, 2011.
Inspire Record 922651 DOI 10.17182/hepdata.59485

Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.

1 data table

The measured differential elastic cross section. Data from the tabulation in CERN-PH-EP-2012-239.


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…

Exclusive Measurement of the $pp \to nn\pi^+\pi^+$ Reaction at 1.1 GeV

The CELSIUS/WASA collaboration Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Eur.Phys.J.A 47 (2011) 108, 2011.
Inspire Record 879711 DOI 10.17182/hepdata.63827

First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.

9 data tables

Total cross section.

Distribution of the invariant mass of the PI+PI+ system.

Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.

More…

A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

The A2 at MAMI collaboration Nefkens, B.M.K. ; Prakhov, S. ; Aguar-Bartolome, P. ; et al.
Phys.Rev.C 90 (2014) 025206, 2014.
Inspire Record 1297221 DOI 10.17182/hepdata.64169

A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

1 data table

D(WIDTH(ETA --> PI0 GAMMA GAMMA))/DM**2(GAMMA GAMMA) obtained from the data of 2007 and 2009 and their average. The error on the average is the total error.


Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Anticic, T. ; et al.
Phys.Rev.C 85 (2012) 035210, 2012.
Inspire Record 1079585 DOI 10.17182/hepdata.59717

Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.

2 data tables

The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 20 to 140 mrad. The errors on the ratios are statistical only.

The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 140 to 240 mrad. The errors on the ratios are statistical only.


Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s}$ = 7TeV proton-proton collisions at LHC

The LHCf collaboration Adriani, O. ; Bonechi, L. ; Bongi, M. ; et al.
Phys.Rev.D 86 (2012) 092001, 2012.
Inspire Record 1115479 DOI 10.17182/hepdata.59925

The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\sqrt{s}=7$\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.

6 data tables

Production rate for PI0 production in the rapidity range 8.9-9.0.

Production rate for PI0 production in the rapidity range 9.0-9.2.

Production rate for PI0 production in the rapidity range 9.2-9.4.

More…

Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 90 (2014) 072002, 2014.
Inspire Record 1292476 DOI 10.17182/hepdata.64778

The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13\ \leq\ y\ \leq\ 0.75$, where $y$ denotes the inelasticity and $5\ \leq\ Q^2\ \leq\ 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.

82 data tables

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=7 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=9 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=12 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

More…

Photoproduction of Isolated Photons, Inclusively and with a Jet, at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 730 (2014) 293-301, 2014.
Inspire Record 1267651 DOI 10.17182/hepdata.64777

The photoproduction of isolated photons, both inclusive and together with a jet, has been measured with the ZEUS detector at HERA using an integrated luminosity of $374\, \mathrm{pb}^{-1}$. Differential cross sections are presented in the isolated-photon transverse-energy and pseudorapidity ranges $6 < E_T^\gamma < 15$ GeV and $-0.7 < \eta^\gamma < 0.9,$ and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{jet} < 35$ GeV and $-1.5 < \eta^{jet} < 1.8,$ for exchanged-photon virtualities $Q^2 < 1$ GeV$^2$. Differential cross sections are also presented for inclusive isolated-photon production as functions of the transverse energy and pseudorapidity of the photon. Higher-order theoretical calculations are compared to the results.

7 data tables

The measured differential photoproduction cross section DSIG/DET(gamma) for isolated inclusive photons.

The measured differential photoproduction cross section DSIG/DETARAP(gamma) for isolated inclusive photons.

The measured differential photoproduction cross section DSIG/DET(gamma) for isolated photons accompanied by a jet.

More…

Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

Small Angle Elastic Scattering at the {CERN} Proton Anti-proton Collider

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 121 (1983) 77-82, 1983.
Inspire Record 180683 DOI 10.17182/hepdata.66558

3roton-antiproton elastic scattering at cm energy 540 GeV has been studied in the t range 0.14 ⩽ − t ⩽ 0.26 GeV 2 . The data is well fitted by an exponential form exp( bt ) with b = 13.3 ± 1.5 GeV −2 .

2 data tables

Elastic Differentiaol Cross Section (545 events). DATA REQUESTED 21 FEB 1983. Data read from plot in paper (29 JAN 2015).

No description provided.


Measurement of the gamma gamma --> pi+ pi- and gamma gamma --> K+ K- processes at energies of 2.4-GeV - 4.1-GeV.

The Belle collaboration Nakazawa, H. ; Uehara, S. ; Abe, K. ; et al.
Phys.Lett.B 615 (2005) 39-49, 2005.
Inspire Record 667712 DOI 10.17182/hepdata.68395

We have measured pi+pi- and K+K- production in two-photon collisions using 87.7 /fb of data collected with the Belle detector at the asymmetric energy e+e- collider KEKB. The cross sections are measured to high precision in the two-photon center-of-mass energy (W) range between 2.4 GeV < W < 4.1 GeV and angular region |cos theta^{*}| < 0.6. The cross section ratio sigma(gammagamma->K+K-)/sigma(gammagamma->pi+pi-) is measured to be 0.89 +- 0.04(stat) +- 0.15(syst) in the range of 3.0 GeV < W < 4.1 GeV, where the ratio is energy independent. We observe a sin^{-4} theta^{*} behavior of the cross section in the same W range. Production of chi_{c0} and chi_{c2} mesons is observed in both gammagamma -> pi+pi- and gammagamma -> K+K- modes.

6 data tables

Cross sections for PI+ PI- and K+ K- production.

Ratio of K+ K- to PI+ PI- production in the region of W from 3.0 to 4.1 GeV, where the ratio is energy independent.

Angular dependence of the normalized differential cross section, $\sigma_0^{-1}{\rm d}\sigma/{\rm d}|\cos\theta^*|$, for the $\pi^+\pi^-$ process. The errors are statistical only.

More…

Search for the dark photon in $\pi^0$ decays

The NA48/2 collaboration Batley, J.R. ; Kalmus, G. ; Lazzeroni, C. ; et al.
Phys.Lett.B 746 (2015) 178-185, 2015.
Inspire Record 1357601 DOI 10.17182/hepdata.67658

A sample of $1.69\times 10^7$ fully reconstructed $\pi^0\to\gamma e^+e^-$ decay candidates collected by the NA48/2 experiment at CERN in 2003--2004 is analysed to search for the dark photon ($A'$) production in the $\pi^0\to\gamma A'$ decay followed by the prompt $A'\to e^+e^-$ decay. No signal is observed, and an exclusion region in the plane of the dark photon mass $m_{A'}$ and mixing parameter $\varepsilon^2$ is established. The obtained upper limits on $\varepsilon^2$ are more stringent than the previous limits in the mass range $9~{\rm MeV}/c^2<m_{A'}<70~{\rm MeV}/c^2$. The NA48/2 sensitivity to the dark photon production in the $K^\pm\to\pi^\pm A'$ decay is also evaluated.

1 data table

The obtained 90% CL upper limits (ULs) on the mixing parameter $\epsilon^2$ for each dark photon (DP) mass hypothesis tested.


Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Search for single top production in e+ e- collisions at s**(1/2) = 189-GeV - 202-GeV.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 494 (2000) 33-45, 2000.
Inspire Record 533360 DOI 10.17182/hepdata.49857

Single top production via flavour changing neutral currents in the reactions e + e − → t ̄ c / u is searched for in approximately 411 pb −1 of data collected by ALEPH at centre-of-mass energies in the range between 189 and 202 GeV. In total, 58 events are selected in the data to be compared with 50.3 expected from Standard Model backgrounds. No deviation from the Standard Model expectation is observed. Upper limits at 95% CL on single top production cross sections at s =189 –202 GeV are derived. A model-dependent limit on the sum of branching ratios BR(t→Zc)+BR(t→Zu)<17% is obtained.

1 data table

SIG(C=LEPT) and SIG(C=HADR) are the cross sections upper limits evaluated for leptonic and hadronic decay modes of the W-boson, while SIG(C=COMB) are the values obtained by combining the leptonic and hadronic W-boson decay channels. All cross sections values are obtained under assumption of BR(TQ --> W+ BQ) = 100 %.


Search for lepton flavour violation in e+ e- collisions at s**(1/2) = 189-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 519 (2001) 23-32, 2001.
Inspire Record 562543 DOI 10.17182/hepdata.49819

We search for lepton flavour violating events (e mu, e tau and mu tau) that could be directly produced in e+e- annihilations, using the full available data sample collected with the OPAL detector at centre-of-mass energies between 189 GeV and 209 GeV. In general, the Standard Model expectations describe the data well for all the channels and at each sqrt(s). A single e mu event is observed where according to our Monte Carlo simulations only 0.019 events are expected from Standard Model processes. We obtain the first limits on the cross-sections sigma(e+e- -> e mu, e tau and mu tau) as a function of sqrt(s) at LEP2 energies.

1 data table

No description provided.


Measurement of triple gauge boson couplings at LEP energies up to 189-GeV

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 21 (2001) 423-441, 2001.
Inspire Record 555574 DOI 10.17182/hepdata.49832

The triple gauge-boson couplings involving the W are determined using data samples collected with the ALEPH detector at mean centre-of-mass energies of 183 GeV and 189 GeV, corresponding to integrated luminosities of 57 pb^-1 and 174 pb^-1, respectively. The couplings, g^Z_1, Kappa_gamma and lambda_gamma, are measured using W-pair events, single-W production and single-gamma production. Each coupling is measured individually with the other two coupling fixed at their Standard Model value. Including ALEPH results from lower energies, the 95% confidence level intervals for the deviation to the Standard Model are -0.087 < Dg^Z_1 < 0.141 -0.200 < DKappa_gamma < 0.258 -0.062 < Lambda_gamma < 0.147. Fits are also presented where two or all three couplings are allowed to vary. In addition, W-pair events are used to set limits on the C- or P-violating couplings g^V_4, g^V_5, Kappa_V, and Lambda_V, where V denotes either gamma or Z. No deviations from the Standard Model expectations are observed.

4 data tables

The errors included the statistical and systematic uncertainties. Deviation from SM values.

The errors included the statistical and systematic uncertainties. Combined results, lower sqrt(s) data are also included.

The errors included the statistical and systematic uncertainties. Combined results, lower sqrt(s) data are also included. Three-parameter fit.

More…

Reaction $\pi^- p \to \eta^\prime n$ in the 15-{GeV}/$c$ - 40-{GeV}/$c$ Momentum Range

The Serpukhov-CERN collaboration Apel, W.D. ; Augenstein, K.H. ; Bertolucci, E. ; et al.
Phys.Lett.B 83 (1979) 131, 1979.
Inspire Record 141023 DOI 10.17182/hepdata.49657

Measurements were made of the cross section of the reactions π − p → ν ′(958)n, η ′ → 2 γ at momenta at 15, 20, 25, 30 and 40 GeV/c. The experiment was carried out on the IHEP 70 GeV accelerator using the 648 channel hodoscope spectrometer NICE for γ-ray detection. A total of 6000 η′ mesons were recorded. A sharp drop is seen in the differential cross section for t → 0. The dependences of the differential cross sections for the π − p → η ′n and π − p → η n on t are identical. On the basis of the ratio of the cross sections for these reactions at t = 0, i.e. R( η′ n ) t=0 = 0.55 ± 0.06 , the singlet-octet mixing angle for pseudoscalar mesons was determined to be β = −(18.2 ± 1.4)°.

8 data tables

AVERAGE RATIO IS 2.76 +- 0.07 PCT.

AVERAGE RATIO IS 0.52 +- 0.02.

More…

Study of Z pair production and anomalous couplings in e+ e- collisions at s**(1/2) between 190-GeV and 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 32 (2003) 303-322, 2003.
Inspire Record 630099 DOI 10.17182/hepdata.49700

A study of Z-boson pair production in e+e- annihilation at center-of-mass energies between 190 GeV and 209 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nn), quark and lepton pairs, (qql+l-, qqnn) and only hadrons (qqqq) are considered. In all states with at least one Z boson decaying hadronically, lifetime, lepton and event-shape tags are used to separate bb pairs from qq final state. Limits on anomalous ZZgamma and ZZZ couplings are derived from the measured cross sections and from event kinematics using an optimal observable method. Limits on low scale gravity with large dimensions are derived from the cross sections and their dependence on polar angle.

1 data table

The NC2 Z0-pair cross sections obtained from fits to the data.


Production rates of b anti-b quark pairs from gluons and b anti-b b anti-b events in hadronic Z0 decays.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2001) 447-460, 2001.
Inspire Record 535059 DOI 10.17182/hepdata.49875

The rates are measured per hadronic Z decay for gluon splitting to bb(bar) quark pairs, g_bb, and of events containing two bb(bar) quark pairs, g_4b, using a sample of four-jet events selected from data collected with the OPAL detector. Events with an enhanced signal of gluon splitting to bb(bar) quarks are selected if two of the jets are close in phase-space and contain detached secondary vertices. For the event sample containing two bb(bar) quark pairs, three of the four jets are required to have a significantly detached secondary vertex. Information from the event topology is combined in a likelihood fit to extract the values of g_bb and g_4b, namely g_bb = (3.07 +- 0.53(stat) +- 0.97(syst))x10^-3 g_4b = (0.36 +- 0.17(stat) +- 0.27(syst))x10^-3

1 data table

No description provided.


Measurement of |V(ub)| using b hadron semileptonic decay.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 21 (2001) 399-410, 2001.
Inspire Record 559675 DOI 10.17182/hepdata.49835

The magnitude of the CKM matrix element Vub is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b -> Xu l nu event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b -> Xu l) to be (1.63 +/- 0.53 +0.55/-0.62) x 10^(-3). The first uncertainty is the statistical error and the second is the systematic error. From this analysis, Vub is determined to be: |Vub| = (4.00 +/- 0.65(stat) +0.67/-0.76(sys) +/- 0.19(HQE)) x 10^(-3). The last error represents the theoretical uncertainties related to the extraction of |Vub| from Br(b -> Xu l) using the Heavy Quark Expansion.

1 data table

CKM is Cabibbo-Kobayashi-Maskawa (CKM) matrix element. The last DSYS error comes from the theoretical uncertainty.


Measurement of the charm structure function F2(c)(gamma) of the photon at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 539 (2002) 13-24, 2002.
Inspire Record 587909 DOI 10.17182/hepdata.49793

The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b

3 data tables

The inclusive D* production cross section.

The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.

The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.