Inclusive photon production at forward rapidities in proton-proton collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 75 (2015) 146, 2015.
Inspire Record 1328669 DOI 10.17182/hepdata.69495

The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities ($2.3 < \eta < 3.9$) in proton-proton collisions at three center-of-mass energies, $\sqrt{s}=0.9$, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2% $\pm$ 0.3% (stat) $\pm$ 8.8% (sys) and 61.2% $\pm$ 0.3% (stat) $\pm$ 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.

2 data tables match query

Energy dependence of average photon multiplicity in INEL proton-proton collisions.

Energy dependence of average photon multiplicity in NSD proton-proton collisions.


Charged-particle multiplicities in proton-proton collisions at $\sqrt{s}$ = 0.9 to 8 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 33, 2017.
Inspire Record 1394854 DOI 10.17182/hepdata.77011

A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\eta|<2$, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\eta|<1$. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\eta|<$ 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

40 data tables match query

Measured pseudorapidity dependence of $dN/d\eta$ for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for INEL>0 collisions at a centre-of-mass energy of 900 GeV.

More…

Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

1 data table match query

$\langle N_{\rm \gamma} \rangle$ measured within $2.3<\eta_{\rm lab}<3.9$ as a function of collision energy in pp collisions.


J/psi production in Indium-Indium collisions at 158 GeV/nucleon

The NA60 collaboration Arnaldi, R. ; Banicz, K. ; Castor, J. ; et al.
Conf.Proc.C 060726 (2006) 430-434, 2006.
Inspire Record 754305 DOI 10.17182/hepdata.57244

The NA60 experiment studies muon pair production at the CERN SPS. In this letter we report on a precision measurement of J/psi in In-In collisions. We have studied the J/psi centrality distribution, and we have compared it with the one expected if absorption in cold nuclear matter were the only active suppression mechanism. For collisions involving more than ~80 participant nucleons, we find that an extra suppression is present. This result is in qualitative agreement with previous Pb-Pb measurements by the NA50 experiment, but no theoretical explanation is presently able to coherently describe both results.

1 data table match query

Values of the J/PSI production cross section, divided by the Drell-Yann cross section, as a function of centrality. Centrality is determined by the amount of energy collectedby the zero degree calorimeter (ZDC), and the average nuber of participants, obtained from E(ZDC) is also given. (High E(ZDC) corresponds to peripheral events and low number of participants, and vice-versa) The values are uncorrected for the J/PSI decay branching ratio.


Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 80 (2009) 024909, 2009.
Inspire Record 819672 DOI 10.17182/hepdata.143606

We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.

1 data table match query

Comparison of the $v_2${BBC} and $v_2${ZDC-SMD} obtained from the S-N and ZDC-BBC-CNT subevents as a function of pT in the 20–60% centrality range.


Jet structure from dihadron correlations in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 73 (2006) 054903, 2006.
Inspire Record 694429 DOI 10.17182/hepdata.151167

Dihadron correlations at high transverse momentum in d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). From these correlations we extract several structural characteristics of jets; the root-mean-squared (RMS) transverse momentum of fragmenting hadrons with respect to the jet sqrt(<j_T^2>), the mean sine-squared angle between the scattered partons <sin^2(phi_jj)>, and the number of particles produced within the dijet that are associated with a high-p_T particle (dN/dx_E distributions). We observe that the fragmentation characteristics of jets in d+Au collisions are very similar to those in p+p collisions and that there is also little dependence on the centrality of the d+Au collision. This is consistent with the nuclear medium having little influence on the fragmentation process. Furthermore, there is no statistically significant increase in the value of <sin^2(phi_jj)> from p+p to d+Au collisions. This constrains the amount of multiple scattering that partons undergo in the cold nuclear medium before and after a hard-collision.

1 data table match query

Near- and far-side widths and conditional yields as a function of $N_{coll}$ for charged hadron triggers (2.5−4 GeV/$c$) and associated charged hadrons (1–2.5 GeV/$c$) from $d$+Au collisions.


Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

13 data tables match query

$B$/$A$ ratio from the fit to the data.

$B$/$A$ ratio from the fit to the data.

Parameter $\alpha$ from the fit to the data.

More…

Effect of event selection on jetlike correlation measurement in $d$+Au collisions at $\sqrt{s_{\rm{NN}}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 743 (2015) 333-339, 2015.
Inspire Record 1335765 DOI 10.17182/hepdata.73235

Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.

2 data tables match query

(a) The near-side jetlike correlated yield obtained from Gaussian fit as in Fig. 1 as function of the uncorrected dN/d$\eta$ at midrapidity measured in the TPC. Two event selections are used: FTPC-Au multiplicity and ZDC-Au energy. The curve is the result from a HIJING calculation.

(a) The near-side jetlike correlated yield obtained from Gaussian fit as in Fig. 1 as function of the uncorrected dN/d$\eta$ at midrapidity measured in the TPC. Two event selections are used: FTPC-Au multiplicity and ZDC-Au energy. The curve is the result from a HIJING calculation.


Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

2 data tables match query

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.


Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 90 (2014) 064904, 2014.
Inspire Record 1280745 DOI 10.17182/hepdata.96269

We report on the first measurement of the azimuthal anisotropy ($v_2$) of dielectrons ($e^{+}e^{-}$ pairs) at mid-rapidity from $\sqrt{s_{_{NN}}} = 200$ GeV Au+Au collisions with the STAR detector at RHIC, presented as a function of transverse momentum ($p_T$) for different invariant-mass regions. In the mass region $M_{ee}\!<1.1$ GeV/$c^2$ the dielectron $v_2$ measurements are found to be consistent with expectations from $\pi^{0}$, $\eta$, $\omega$ and $\phi$ decay contributions. In the mass region $1.1\!<M_{ee}\!<2.9$ GeV/$c^2$, the measured dielectron $v_2$ is consistent, within experimental uncertainties, with that from the $c\bar{c}$ contributions.

3 data tables match query

The $p_T$-integrated dielectron $v_2$ as a function of $M_{ee}$ in minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

The $v_2$ of hadrons $\pi$, $K$, $p$, $\phi$ and $\Lambda$ in minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for the $\pi^0$ mass region.

The $p_T$-integrated dielectron $v_2$ as a function of $M_{ee}$ in minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, expected from the decays of $\pi^0$, $\eta$, $\omega$ and $\phi$ and from the $car{c}$ contribution.