None
No description provided.
The production and decay of the quasi-two-body final states KΔ(1232) and K ∗ (892)N produced in K + d interactions below 1.5 GeV/ c have been studied in a bubble chamber experiment.
RESONANCE CROSS SECTIONS COMPUTED BY MULTIPLYING THE PRODUCTION PERCENTAGES GIVEN BY THE INTERFERENCE MODEL BY THE CHANNEL CROSS SECTIONS GIVEN IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
DIFFERENTIAL CROSS SECTIONS FROM DEUTERIUM DATA, NORMALIZED TO THE EXPERIMENTAL INTEGRATED CROSS SECTIONS QUOTED IN T 2.
LEGENDRE COEFFICIENTS FROM DEUTERIUM DATA.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.
We present results of a K − d experiment performed with the 81 cm Saclay deuterium bubble chamber which was exposed to a K − beam at 4 momenta between 680 and 840 MeV/ c at the CERN PS. Cross sections were measured for inelastic two- and three-body K − n reactions on the basis of 5200 events/mb. Resonance production in the three-body reactions is discussed. In addition, differential cross sections and polarisations are presented for inelastic two-body reactions.
CROSS SECTIONS FOR TWO-BODY REACTIONS.
CROSS SECTIONS FOR THREE-BODY REACTIONS.
CROSS SECTIONS FOR K- P REACTIONS.
Differential cross sections for elastic p−p scattering have been measured at 285, 348, 398, 414, 455, 497, 530, and 572 MeV kinetic energy. The experiment was performed at the CERN synchrocyclotron, using multiwire proportional chambers placed directly in a proton beam. Scattering was observed for 1.5°≲θ≲10° in the laboratory system. The ratio αp of the real and imaginary parts of the non-spin-flip nuclear forward amplitude was derived from the interference between the Coulomb and nuclear amplitudes. The values obtained are model-dependent, but in this energy range αp is positive and decreases with energy. Qualitatively good agreement with dispersion-relation predictions is observed.
No description provided.
No description provided.
No description provided.
The reaction pp→ π + d was studied at incident proton energies of 398, 455, 497, 530 and 572 MeV. Measurements of dσ/dΩ at 455 and 572 MeV show the presence of pion d-waves in the pion-deuteron system. Asymmetry measurements yield similar conclusions. Total cross-section measurements agree with recent fits to earlier data.
NORMALIZED TO 4.38 MB/SR AT THETA = 13.19 DEG FOR P P ELASTIC.
NORMALIZED TO 4.68 MB/SR AT THETA = 13.35 DEG FOR P P ELASTIC.
NORMALIZED (RELATIVE ERROR 2.1 PCT) TO THE DATA OF RICHARD-SERRE ET AL., NP B20, 413 (1970) (ABSOLUTE SCALE UNCERTAINTY 4.5 PCT).
Elastic and inelastic scattering of 1.044 GeV protons have been studied on isotopically enriched even 40, 42, 44, 48 Ca isotopes and 48 Ti. A spin independent Glauber theory analysis of the elastic scattering allowed the extraction of neutron and nuclear matter densities for these targets.
No description provided.
No description provided.
No description provided.
The π + p cross section for elastic scattering from hydrogen was measured at seven incident energies ranging from 20.8 to 95.9 MeV for an angular range from 60° to 145°. The experimental set-up is discussed in detail as well as the method used for data analysis. A table of results and a set of phase shifts are provided.
No description provided.
No description provided.
No description provided.
The differential cross section for photoproduction of π° on hydrogen has been measured in a photon energy range of 560-690 MeV and for production angles in the interval 90°-105° in the centre of mass system. The experiment detects the recoil proton and a π°-decay photon in coincidence, using optical spark chambers and a lead glass Cerenkov counter. Presented cross sections, based on 35 000 events recorded on film, are in good agreement with recent phase shift analysis.
No description provided.
No description provided.
No description provided.
The differential cross section for n−p elastic scattering in the angular region 145°<θc.m.<180° has been measured with high statistical accuracy using the monoenergetic neutron beam at Clinton P. Anderson Meson Physics Facility. The results differ significantly from previous Dubna and Princeton-Pennsylvania Accelerator results but agree reasonably well with recent Saclay data except at extreme backward angles.
No description provided.